cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A243503 Sums of parts of partitions (i.e., their sizes) as ordered in the table A241918: a(n) = Sum_{i=A203623(n-1)+2..A203623(n)+1} A241918(i).

Original entry on oeis.org

0, 1, 2, 2, 3, 4, 4, 3, 3, 6, 5, 6, 6, 8, 5, 4, 7, 5, 8, 9, 7, 10, 9, 8, 4, 12, 4, 12, 10, 8, 11, 5, 9, 14, 6, 7, 12, 16, 11, 12, 13, 11, 14, 15, 7, 18, 15, 10, 5, 7, 13, 18, 16, 6, 8, 16, 15, 20, 17, 11, 18, 22, 10, 6, 10, 14, 19, 21, 17, 10, 20, 9, 21, 24, 6, 24
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2014

Keywords

Comments

Each n occurs A000041(n) times in total.
Where are the first and the last occurrence of each n located?

Crossrefs

Cf. A243504 (the products of parts), A241918, A000041, A227183, A075158, A056239, A241909.
Sum of prime indices of A241916, the even bisection of A358195.
Sums of even-indexed rows of A358172.
A112798 lists prime indices, length A001222, sum A056239, max A061395.

Programs

  • Mathematica
    Table[If[n==1,0,With[{y=Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]},Last[y]*Length[y]+Last[y]-Total[y]+Length[y]-1]],{n,100}] (* Gus Wiseman, Jan 09 2023 *)

Formula

a(n) = Sum_{i=A203623(n-1)+2..A203623(n)+1} A241918(i).
a(n) = A056239(A241909(n)).
a(n) = A227183(A075158(n-1)).
a(A000040(n)) = a(A000079(n)) = n for all n >= 1.
a(A122111(n)) = a(n) for all n.
a(A243051(n)) = a(n) for all n, and likewise for A243052, A243053 and other rows of A243060.
a(n) = A061395(n) * A001222(n) + A061395(n) - A056239(n) + A001222(n) - 1. - Gus Wiseman, Jan 09 2023
a(n) = A326844(2n) + A001222(n). - Gus Wiseman, Jan 09 2023

A243504 Product of parts of integer partitions as ordered by the table A241918: a(n) = Product_{i=A203623(n-1)+2..A203623(n)+1} A241918(i).

Original entry on oeis.org

1, 1, 1, 2, 1, 4, 1, 3, 2, 8, 1, 9, 1, 16, 4, 4, 1, 6, 1, 27, 8, 32, 1, 16, 2, 64, 3, 81, 1, 18, 1, 5, 16, 128, 4, 12, 1, 256, 32, 64, 1, 54, 1, 243, 9, 512, 1, 25, 2, 12, 64, 729, 1, 8, 8, 256, 128, 1024, 1, 48, 1, 2048, 27, 6, 16, 162, 1, 2187, 256, 36, 1, 20, 1, 4096
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2014

Keywords

Crossrefs

The positions of ones after a(1)=1 is given by A000040 (primes).
Cf. A243503 (the sum of parts), A241918, A227184, A075158, A003963, A241909.

Formula

a(n) = Product_{i=A203623(n-1)+2..A203623(n)+1} A241918(i).
a(n) = A003963(A241909(n)).
a(n) = A227184(A075158(n-1)).
a(A000040(n)) = 1 for all n.
a(A000079(n)) = n for all n.

A241909 Self-inverse permutation of natural numbers: a(1)=1, a(p_i) = 2^i, and if n = p_i1 * p_i2 * p_i3 * ... * p_{ik-1} * p_ik, where p's are primes, with their indexes are sorted into nondescending order: i1 <= i2 <= i3 <= ... <= i_{k-1} <= ik, then a(n) = 2^(i1-1) * 3^(i2-i1) * 5^(i3-i2) * ... * p_k^(1+(ik-i_{k-1})). Here k = A001222(n) and ik = A061395(n).

Original entry on oeis.org

1, 2, 4, 3, 8, 9, 16, 5, 6, 27, 32, 25, 64, 81, 18, 7, 128, 15, 256, 125, 54, 243, 512, 49, 12, 729, 10, 625, 1024, 75, 2048, 11, 162, 2187, 36, 35, 4096, 6561, 486, 343, 8192, 375, 16384, 3125, 50, 19683, 32768, 121, 24, 45, 1458, 15625, 65536, 21, 108, 2401
Offset: 1

Views

Author

Antti Karttunen, May 03 2014, partly inspired by Marc LeBrun's Jan 11 2006 message on SeqFan mailing list

Keywords

Comments

This permutation maps between the partitions as ordered in A112798 and A241918 (the original motivation for this sequence).
For all n > 2, A007814(a(n)) = A055396(n)-1, which implies that this self-inverse permutation maps between primes (A000040) and the powers of two larger than one (A000079(n>=1)), and apart from a(1) & a(2), this also maps each even number to some odd number, and vice versa, which means there are no fixed points after 2.
A122111 commutes with this one, that is, a(n) = A122111(a(A122111(n))).
Conjugates between A243051 and A242424 and other rows of A243060 and A243070.

Examples

			For n = 12 = 2 * 2 * 3 = p_1 * p_1 * p_2, we obtain by the first formula 2^(1-1) * 3^(1-1) * 5^(1+(2-1)) = 5^2 = 25. By the second formula, as n = 2^2 * 3^1, we obtain the same result, p_{1+2} * p_{2+1} = p_3 * p_3 = 25, thus a(12) = 25.
Using the product formula over the terms of row n of table A241918, we see, because 9450 = 2*3*3*3*5*5*7 = p_1^1 * p_2^3 * p_3^2 * p_4^1, that the corresponding row in A241918 is {2,5,7,7}, and multiplying p_2 * p_5 * p_7^2 yields 3 * 11 * 17 * 17 = 9537, thus a(9450) = 9537.
Similarly, for 9537, the corresponding row in A241918 is {1,2,2,2,3,3,4}, and multiplying p_1^1 * p_2^3 * p_3^2 * p_4^1, we obtain 9450 back.
		

Crossrefs

Cf. also A278220 (= A046523(a(n))), A331280 (its rgs_transform), A331299 (= min(n,a(n))).
{A000027, A122111, A241909, A241916} form a 4-group.

Programs

  • Haskell
    a241909 1 = 1
    a241909 n = product $ zipWith (^) a000040_list $ zipWith (-) is (1 : is)
                where is = reverse ((j + 1) : js)
                      (j:js) = reverse $ map a049084 $ a027746_row n
    -- Reinhard Zumkeller, Aug 04 2014
    
  • Mathematica
    Array[If[# == 1, 1, Function[t, Times @@ Prime@ Accumulate[If[Length@ t < 2, {0}, Join[{1}, ConstantArray[0, Length@ t - 2], {-1}]] + ReplacePart[t, Map[#1 -> #2 & @@ # &, #]]]]@ ConstantArray[0, Transpose[#][[1, -1]]] &[FactorInteger[#] /. {p_, e_} /; p > 0 :> {PrimePi@ p, e}]] &, 56] (* Michael De Vlieger, Jan 23 2020 *)
  • PARI
    A241909(n) = if(1==n||isprime(n),2^primepi(n),my(f=factor(n),h=1,i,m=1,p=1,k=1); while(k<=#f~, p = nextprime(1+p); i = primepi(f[k,1]); m *= p^(i-h); h = i; if(f[k,2]>1, f[k,2]--, k++)); (p*m)); \\ Antti Karttunen, Jan 17 2020

Formula

If n is a prime with index i (p_i), then a(n) = 2^i, otherwise when n = p_i1 * p_i2 * p_i3 * ... p_ik, where p_i1, p_i2, p_i3, ..., p_ik are the primes present (not necessarily all distinct) in the prime factorization of n, sorted into nondescending order, a(n) = 2^(i1-1) * 3^(i2-i1) * 5^(i3-i2) * ... * p_k^(1+(ik-i_{k-1})).
Equally, if n = 2^k, then a(n) = p_k, otherwise, when n = 2^e1 * 3^e2 * 5^e3 * ... * p_k^{e_k}, i.e., where e1 ... e_k are the exponents (some of them possibly zero, except the last) of the primes 2, 3, 5, ... in the prime factorization of n, a(n) = p_{1+e1} * p_{1+e1+e2} * p_{1+e1+e2+e3} * ... * p_{e1+e2+e3+...+e_k}.
From the equivalence of the above two formulas (which are inverses of each other) it follows that a(a(n)) = n, i.e., that this permutation is an involution. For a proof, please see the attached notes.
The first formula corresponds to this recurrence:
a(1) = 1, a(p_k) = 2^k for primes with index k, otherwise a(n) = (A000040(A001222(n))^(A241917(n)+1)) * A052126(a(A052126(n))).
And the latter formula with this recurrence:
a(1) = 1, and for n>1, if n = 2^k, a(n) = A000040(k), otherwise a(n) = A000040(A001511(n)) * A242378(A007814(n), a(A064989(n))).
[Here A242378(k,n) changes each prime p(i) in the prime factorization of n to p(i+k), i.e., it's the result of A003961 iterated k times starting from n.]
We also have:
a(1)=1, and for n>1, a(n) = Product_{i=A203623(n-1)+2..A203623(n)+1} A000040(A241918(i)).
For all n >= 1, A001222(a(n)) = A061395(n), and vice versa, A061395(a(n)) = A001222(n).
For all n > 1, a(2n-1) = 2*a(A064216(n)).

Extensions

Typos in the name corrected by Antti Karttunen, May 31 2014

A241918 Table of partitions where the ordering is based on the modified partial sums of the exponents of primes in the prime factorization of n.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 4, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5
Offset: 1

Views

Author

Antti Karttunen, May 03 2014, based on Marc LeBrun's Jan 11 2006 message on SeqFan mailing list

Keywords

Comments

a(1) = 0 by convention (stands for an empty partition).
For n >= 2, A203623(n-1)+2 gives the index to the beginning of row n and for n>=1, A203623(n)+1 is the index to the end of row n.

Examples

			Table begins:
Row     Partition
[ 1]    0;         (stands for empty partition)
[ 2]    1;         (as 2 = 2^1)
[ 3]    1,1;       (as 3 = 2^0 * 3^1)
[ 4]    2;         (as 4 = 2^2)
[ 5]    1,1,1;     (as 5 = 2^0 * 3^0 * 5^1)
[ 6]    2,2;       (as 6 = 2^1 * 3^1)
[ 7]    1,1,1,1;   (as 7 = 2^0 * 3^0 * 5^0 * 7^1)
[ 8]    3;         (as 8 = 2^3)
[ 9]    1,2;       (as 9 = 2^0 * 3^2)
[10]    2,2,2;     (as 10 = 2^1 * 3^0 * 5^1)
[11]    1,1,1,1,1;
[12]    3,3;
[13]    1,1,1,1,1,1;
[14]    2,2,2,2;
[15]    1,2,2;     (as 15 = 2^0 * 3^1 * 5^1)
[16]    4;
[17]    1,1,1,1,1,1,1;
[18]    2,3;       (as 18 = 2^1 * 3^2)
etc.
If n is 2^k (k>=1), then the partition is a singleton {k}, otherwise, add one to the exponent of 2 (= A007814(n)), and subtract one from the exponent of the greatest prime dividing n (= A071178(n)), leaving the intermediate exponents as they are, and then take partial sums of all, thus resulting for e.g. 15 = 2^0 * 3^1 * 5^1 the modified sequence of exponents {0+1, 1, 1-1} -> {1,1,0}, whose partial sums {1,1+1,1+1+0} -> {1,2,2} give the corresponding partition at row 15.
		

Crossrefs

For n>=2, the length of row n is given by A061395(n).
Cf. also A067255, A203623, A241914.
Other tables of partitions: A112798 (also based on prime factorization), A227739, A242628 (encoded in the binary representation of n), and A036036-A036037, A080576-A080577, A193073 for various lexicographical orderings.
Permutation A241909 maps between order of partitions employed here, and the order employed in A112798.
Permutation A122111 is induced when partitions in this list are conjugated.
A241912 gives the row numbers for which the corresponding rows in A112798 and here are the conjugate partitions of each other.

Programs

  • Mathematica
    Table[If[n == 1, {0}, Function[s, Function[t, Accumulate[If[Length@ t < 2, {0}, Join[{1}, ConstantArray[0, Length@ t - 2], {-1}]] + ReplacePart[t, Map[#1 -> #2 & @@ # &, s]]]]@ ConstantArray[0, Transpose[s][[1, -1]]]][FactorInteger[n] /. {p_, e_} /; p > 0 :> {PrimePi@ p, e}]], {n, 31}] // Flatten (* Michael De Vlieger, May 12 2017 *)

Formula

If A241914(n)=0 and A241914(n+1)=0, a(n) = A067255(n); otherwise, if A241914(n)=0 and A241914(n+1)>0, a(n) = A067255(n)+1; otherwise, if A241914(n)>0 and A241914(n+1)=0, a(n) = a(n-1) + A067255(n) - 1, otherwise, when A241914(n)>0 and A241914(n+1)>0, a(n) = a(n-1) + A067255(n).

A241914 After a(1)=0, numbers 0 .. A061395(n)-1, followed by numbers 0 .. A061395(n+1)-1, etc.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 1, 2, 0, 1, 0, 1, 2, 3, 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 4, 0, 1, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 0, 1, 2, 0, 0, 1, 2, 3, 4, 5, 6, 0, 1, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 0, 1, 2, 0, 1, 2, 3, 4, 5, 0, 1, 0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0
Offset: 1

Views

Author

Antti Karttunen, May 01 2014

Keywords

Examples

			Viewed as an irregular table, the sequence is constructed as:
"Row"
  [1] 0; (by convention, a(1)=0)
  [2] 0; (because A061395(2)=1 (the index of the largest prime factor), we have here terms from 0 to 1-1)
  [3] 0, 1; (because A061395(3)=2, we have terms from 0 to 2-1)
  [4] 0;
  [5] 0, 1, 2; (because A061395(5)=3, we have terms from 0 to 3-1)
  [6] 0, 1;    (because A061395(6)=2, we have terms from 0 to 2-1)
  [7] 0, 1, 2, 3; (because A061395(7)=4, we have terms from 0 to 4-1)
etc.
		

Crossrefs

One less than A241915.

Programs

Formula

a(1)=0, a(n) = n - A203623(A241920(n)-1) - 2.

A241915 After a(1)=1, numbers 1 .. A061395(n), followed by numbers 1 .. A061395(n+1), etc.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 3, 4, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 5, 1, 2, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 1, 2, 3, 1, 1, 2, 3, 4, 5, 6, 7, 1, 2, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 1, 2, 3, 1, 2, 3, 4, 5, 6, 1, 2, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1
Offset: 1

Views

Author

Antti Karttunen, May 01 2014

Keywords

Examples

			Viewed as an irregular table, the sequence is constructed as:
"Row"
  [1] 1; (by convention, a(1)=1)
  [2] 1; (because A061395(2)=1 (the index of the largest prime factor), we have here terms from 1 to 1)
  [3] 1, 2; (because A061395(3)=2, we have terms from 1 to 2)
  [4] 1;
  [5] 1, 2, 3; (because A061395(5)=3, we have terms from 1 to 3)
  [6] 1, 2;    (because A061395(6)=2, we have terms from 1 to 2)
  [7] 1, 2, 3, 4; (because A061395(7)=4, we have terms from 1 to 4)
etc.
		

Crossrefs

One more than A241914.

Programs

Formula

a(1)=1, a(n) = n - A203623(A241920(n)-1) - 1.

A241920 After a(1)=1, each n appears A061395(n) times, where A061395 gives the index of the largest prime factor of n.

Original entry on oeis.org

1, 2, 3, 3, 4, 5, 5, 5, 6, 6, 7, 7, 7, 7, 8, 9, 9, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 16, 17, 17, 17, 17, 17, 17, 17, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 22
Offset: 1

Views

Author

Antti Karttunen, May 01 2014

Keywords

Comments

Only numbers that occur just once are the powers of two (A000079).

Crossrefs

Showing 1-7 of 7 results.