A203628
Indices of 9-gonal (nonagonal) numbers which are also 10-gonal (decagonal).
Original entry on oeis.org
1, 589, 528601, 474682789, 426264615601, 382785150126589, 343740638549061001, 308678710631906651989, 277193138406813624424801, 248919129610608002826818989, 223529101197187579724859027001, 200728883955944835984920579427589
Offset: 1
The second number that is both 9-gonal (nonagonal) and 10-gonal (decagonal) is A001106(589) = 1212751. Hence a(2) = 589.
-
LinearRecurrence[{899, -899, 1}, {1, 589, 528601}, 12]
A203629
Indices of 10-gonal (decagonal) numbers which are also 9-gonal (nonagonal).
Original entry on oeis.org
1, 551, 494461, 444025091, 398734036921, 358062721129631, 321539924840371381, 288742494443932370171, 259290438470726428041841, 232842525004217888449202711, 209092328163349193100955992301, 187764677848162571186770031883251
Offset: 1
The second number that is both 9-gonal (nonagonal) and 10-gonal (decagonal) is A001107(551) = 1212751. Hence a(2) = 551.
-
LinearRecurrence[{899, -899, 1}, {1, 551, 494461}, 12]
A342300
Least nonnegative number greater than the previous number which is simultaneously an n-gonal and (n+1)-gonal number.
Original entry on oeis.org
0, 1, 3, 36, 9801, 40755, 121771, 297045, 631125, 1212751, 2158695, 3617601, 5773825, 8851275, 13117251, 18886285, 26523981, 36450855, 49146175, 65151801, 85076025, 109597411, 139468635, 175520325, 218664901, 269900415, 330314391, 401087665, 483498225, 578925051, 688851955, 814871421
Offset: 0
a(3) is the least triangular and square number > 3, which is 36: A001110(2).
a(4) is the least square and pentagonal number > 36, which is 9801: A036353(2).
-
a[n_] := Intersection[ Table[ PolygonalNumber[n, i], {i, 2, 10000}], Table[ PolygonalNumber[n + 1, i], {i, 2, 10000}]][[1]]; a[0] = 0; a[1] = 1; Array[a, 30, 0] (* Or *)
a[n_] := a[n] = 6a[n - 1] -15a[n - 2] +20a[n - 3] -15a[n - 4] +6a[n - 5] -a[n - 6]; a[0] = 0; a[1] = 1; a[2] = 3; a[3] = 36; a[4] = 9801; a[5] = 40755; a[6] = 121771; a[7] = 297045; a[8] = 631125; a[9] = 1212751; Array[a, 30, 0]
A378245
Numbers that are both k-gonal and (k+1)-gonal for some k >= 3.
Original entry on oeis.org
1, 36, 1225, 9801, 40755, 41616, 121771, 297045, 631125, 1212751, 1413721, 2158695, 3617601, 5773825, 8851275, 13117251, 18886285, 26523981, 36450855, 48024900, 49146175, 65151801, 85076025, 94109401, 109597411, 139468635, 175520325, 218664901, 269900415, 330314391
Offset: 1
a(2) = 36 is both the 8th triangular and the 6th square number.
a(3) = 1225 is both the 49th triangular and the 35th square number.
a(5) = 40755 is both the 165th pentagonal number and the 143th hexagonal number.
The subdiagonal of
A189216 is also a subsequence.
-
upto(limit) = my(terms=List(1)); for(k=3, oo, my(found=0); for(n=2, oo, my(a = (2*n - 1)^2, b = (4*n*(3*n - 5) + 6), c = (8*(n-1)^2 + 1), s = (a*k^2 - b*k + c), v = n * (n*k - k - 2*n + 4) / 2); if(issquare(s), my(t = sqrtint(s) + k - 3); if(t % (2*(k-1)) == 0, listput(terms, v); found += 1)); if(v >= limit, break)); if(found == 0, break)); Vec(vecsort(terms)); \\ Daniel Suteu, Dec 08 2024
Showing 1-4 of 4 results.
Comments