Original entry on oeis.org
13, 4453, 9674704, 75224946901, 1545474559060224, 69549952010359093897, 6036862150681054978834432, 921916957672242760231518256521, 231086778644984585535258936647680000
Offset: 1
-
f[j_] := j^2; z = 12;
u[n_] := Product[f[j]^2 - f[j] f[k] + f[k]^2,
{j, 1, k - 1}]
v[n_] := Product[u[n], {k, 2, n}]
Table[v[n], {n, 1, z}] (* A203675 *)
Table[v[n + 1]/v[n], {n, 1, z}] (* A203676 *)
Table[Product[k^4 - k^2*(n+1)^2 + (n+1)^4, {k, 1, n}], {n, 1, 12}] (* Vaclav Kotesovec, Nov 21 2023 *)
A093883
Product of all possible sums of two distinct numbers taken from among first n natural numbers.
Original entry on oeis.org
1, 3, 60, 12600, 38102400, 2112397056000, 2609908810629120000, 84645606509847871488000000, 82967862872337478796810649600000000, 2781259372192376861719959017613164544000000000
Offset: 1
A367668
a(n) = Product_{i=1..n, j=1..n} (i^4 - i^2*j^2 + j^4).
Original entry on oeis.org
1, 2704, 4343072672016, 104066856161782811235776987136, 368057974579278182597141600363036562863943425064960000, 1139317987311004502889916180807286481186277543437822119282797720728081762451885916160000
Offset: 1
-
Table[Product[Product[i^4 - i^2*j^2 + j^4, {i, 1, n}], {j, 1, n}], {n, 1, 10}]
-
from math import prod, factorial
def A367668(n): return (prod((k:=j**2)**2+(m:=i**2)*(m-k) for i in range(1,n) for j in range(i+1,n+1))*factorial(n)**2)**2 # Chai Wah Wu, Nov 26 2023
Showing 1-3 of 3 results.
Comments