Original entry on oeis.org
17, 7954, 23557648, 249581834276, 6985971879768576, 428313101742584476552, 50648802606721926260916224, 10537561069087080809570265074448, 3598422455223499123258044906373120000, 1910287477970606754101128649923632473220896
Offset: 1
-
f[j_] := j^2; z = 12;
u[n_] := Product[f[j]^2 + f[k]^2, {j, 1, k - 1}]
v[n_] := Product[u[n], {k, 2, n}]
Table[v[n], {n, 1, z}] (* A203677 *)
Table[v[n + 1]/v[n], {n, 1, z}] (* A203678 *)
Table[Product[k^4 + (n + 1)^4, {k, 1, n}], {n, 1, 12}] (* Vaclav Kotesovec, Sep 08 2023 *)
A093883
Product of all possible sums of two distinct numbers taken from among first n natural numbers.
Original entry on oeis.org
1, 3, 60, 12600, 38102400, 2112397056000, 2609908810629120000, 84645606509847871488000000, 82967862872337478796810649600000000, 2781259372192376861719959017613164544000000000
Offset: 1
A324437
a(n) = Product_{i=1..n, j=1..n} (i^4 + j^4).
Original entry on oeis.org
1, 2, 18496, 189567553208832, 53863903330477722171391434817536, 4194051697335929481600368256016484482740174637152337920000, 530545265060440849231458462212366841894726534233233018777709463062563850450708386692464640000
Offset: 0
-
a:= n-> mul(mul(i^4+j^4, i=1..n), j=1..n):
seq(a(n), n=0..7); # Alois P. Heinz, Jun 24 2023
-
Table[Product[i^4 + j^4, {i, 1, n}, {j, 1, n}], {n, 1, 6}]
-
from math import prod, factorial
def A324437(n): return (prod(i**4+j**4 for i in range(1,n) for j in range(i+1,n+1))*factorial(n)**2)**2<Chai Wah Wu, Nov 26 2023
Showing 1-3 of 3 results.
Comments