A203688 v(n+1)/v(n), where v=A203687.
3, 868, 137683728, 33559369419469824, 30814027871378630714538393600, 228763757339598304909903916639768291573760000, 26160851477909352213716196682766580796112417641624416288768000000
Offset: 1
Keywords
Programs
-
Mathematica
f[j_] := j!; z = 8; u[n_] := Product[f[j]^2 - f[j] f[k] + f[k]^2, {j, 1, k - 1}] v[n_] := Product[u[n], {k, 2, n}] Table[v[n], {n, 1, z}] (* A203687 *) Table[v[n + 1]/v[n], {n, 1, z}] (* A203688 *) Table[Product[k!^2 - k!*(n+1)! + (n+1)!^2, {k, 1, n}], {n, 1, 10}] (* Vaclav Kotesovec, Nov 21 2023 *)
Formula
From Vaclav Kotesovec, Nov 21 2023: (Start)
a(n) ~ (n+1)!^(2*n).
a(n) ~ (2*Pi)^n * n^(2*n^2 + 3*n) / exp(2*n^2 - 13/6). (End)
Comments