cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203848 a(n) = sigma(n)*Fibonacci(n), where sigma(n) = A000203(n), the sum of divisors of n.

Original entry on oeis.org

1, 3, 8, 21, 30, 96, 104, 315, 442, 990, 1068, 4032, 3262, 9048, 14640, 30597, 28746, 100776, 83620, 284130, 350272, 637596, 687768, 2782080, 2325775, 5098506, 7856720, 17797416, 15426870, 59906880, 43080608, 137233467, 169179744, 307955898, 442918320, 1358662032
Offset: 1

Views

Author

Paul D. Hanna, Jan 12 2012

Keywords

Comments

Compare g.f. to the Lambert series identity: Sum_{n>=1} n*x^n/(1-x^n) = Sum_{n>=1} sigma(n)*x^n.

Examples

			G.f.: A(x) = x + 3*x^2 + 8*x^3 + 21*x^4 + 30*x^5 + 96*x^6 + 104*x^7 +...
where A(x) = x/(1-x-x^2) + 2*1*x^2/(1-3*x^2+x^4) + 3*2*x^3/(1-4*x^3-x^6) + 4*3*x^4/(1-7*x^4+x^8) + 5*5*x^5/(1-11*x^5-x^10) + 6*8*x^6/(1-18*x^6+x^12) +...+ n*fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) +...
		

Crossrefs

Cf. A203847, A203849, A203838, A000203 (sigma), A000204 (Lucas), A000045.

Programs

  • Magma
    [DivisorSigma(1, n)*Fibonacci(n): n in [1..40]]; // Vincenzo Librandi, Aug 12 2016
  • Mathematica
    Table[DivisorSigma[1, n] Fibonacci[n], {n, 40}] (* Wesley Ivan Hurt, Aug 10 2016 *)
  • PARI
    {a(n)=sigma(n)*fibonacci(n)}
    
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff(sum(m=1,n,m*fibonacci(m)*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}
    

Formula

G.f.: Sum_{n>=1} n*fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} sigma(n)*fibonacci(n)*x^n, where Lucas(n) = A000204(n).