cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203853 a(n) = (1/n) * Sum_{d|n} moebius(n/d) * Lucas(d)^2, where Lucas(n) = A000204(n).

Original entry on oeis.org

1, 4, 5, 10, 24, 50, 120, 270, 640, 1500, 3600, 8610, 20880, 50700, 124024, 304290, 750120, 1854400, 4600200, 11440548, 28527320, 71289000, 178526880, 447910470, 1125750120, 2833885800, 7144449920, 18036373140, 45591631800, 115381697740, 292329067800, 741410800830
Offset: 1

Views

Author

Paul D. Hanna, Jan 07 2012

Keywords

Comments

Apparently the same as A032170, if n > 2. - R. J. Mathar, Jan 11 2012

Examples

			G.f.: F(x) = 1/((1-x-x^2) * (1-3*x^2+x^4)^4 * (1-4*x^3-x^6)^5 * (1-7*x^4+x^8)^10 * (1-11*x^5-x^10)^24 * (1-18*x^6+x^12)^50 * (1-29*x^7-x^14)^120 * ... * (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^a(n) * ...)
where F(x) = exp( Sum_{n>=1} Lucas(n)^3 * x^n/n ) = g.f. of A203803:
F(x) = 1 + x + 14*x^2 + 35*x^3 + 205*x^4 + 744*x^5 + 3414*x^6 + ...
where
log(F(x)) = x + 3^3*x^2/2 + 4^3*x^3/3 + 7^3*x^4/4 + 11^3*x^5/5 + 18^3*x^6/6 + 29^3*x^7/7 + 47^3*x^8/8 + ... + Lucas(n)^3*x^n/n + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_]:= 1/n DivisorSum[n, MoebiusMu[n/#] LucasL[#]^2 &]; Array[a, 30] (* G. C. Greubel, Dec 25 2017 *)
  • PARI
    {a(n)=if(n<1, 0, sumdiv(n, d, moebius(n/d)*(fibonacci(d-1)+fibonacci(d+1))^2)/n)}
    
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=local(F=exp(sum(m=1, n, Lucas(m)^3*x^m/m)+x*O(x^n)));if(n==1,1,polcoeff(F*prod(k=1,n-1,(1 - Lucas(k)*x^k + (-1)^k*x^(2*k) +x*O(x^n))^a(k)),n)/Lucas(n))}

Formula

G.f.: 1/Product_{n>=1} (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^a(n) = exp(Sum_{n>=1} Lucas(n)^3 * x^n/n), which is the g.f. of A203803.
a(n) ~ phi^(2*n) / n, where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Sep 02 2017