cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204089 The number of 1 by n Haunted Mirror Maze puzzles with a unique solution ending with a mirror, where mirror orientation is fixed.

Original entry on oeis.org

1, 1, 4, 14, 48, 164, 560, 1912, 6528, 22288, 76096, 259808, 887040, 3028544, 10340096, 35303296, 120532992, 411525376, 1405035520, 4797091328, 16378294272, 55918994432, 190919389184, 651839567872, 2225519493120, 7598398836736, 25942556360704, 88573427769344
Offset: 0

Views

Author

David Nacin, Jan 10 2012

Keywords

Comments

Apart from a leading 1, the same as A007070. - R. J. Mathar, Jan 16 2012
Since the uniqueness of a solution is unaffected by the orientation of the mirrors in this 1 by n case, we assume mirror orientation is fixed for this sequence.
Dropping the requirement that the board end with a mirror gives A204090. Allowing for mirror orientation gives A204091. Allowing for orientation and dropping the requirement gives A204092.

Examples

			For M(3) we would have the following possibilities:
('Z', 'Z', '/')
('Z', 'G', '/')
('Z', '/', '/')
('V', 'V', '/')
('V', 'G', '/')
('V', '/', '/')
('G', 'Z', '/')
('G', 'V', '/')
('G', 'G', '/')
('G', '/', '/')
('/', 'Z', '/')
('/', 'V', '/')
('/', 'G', '/')
('/', '/', '/')
		

Crossrefs

Programs

  • Magma
    [1] cat [n le 2 select 4^(n-1) else 4*Self(n-1) - 2*Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 21 2022
    
  • Mathematica
    LinearRecurrence[{4,-2}, {1,1,4}, 31]
  • PARI
    Vec((1-x)*(1-2*x)/(1-4*x+2*x^2) + O(x^30)) \\ Michel Marcus, Dec 06 2015
    
  • Python
    def a(n, d={0:1, 1:4}):
        if n in d: return d[n]
        d[n] = 4*a(n-1) - 2*a(n-2)
        return d[n]
    print([1]+[a(n) for n in range(31)])
    
  • Python
    #Produces a(n) through enumeration and also displays boards:
    def Mprint(n):
     print('The following generate boards with a unique solution')
     s=0
     for x in product(['Z', 'V', 'G', '/'], repeat=n):
      if x[-1]=='/':
       #Splitting x up into a list pieces
       y=list(x)
       z=list()
       while y:
        #print(y)
        if '/' in y:
         if y[0] != '/': #Don't need to add blank pieces to z
          z.append(y[:y.index('/')])
         y=y[y.index('/')+1:]
        else:
         z.append(y)
         y=[]
       #For each element in the list checking for Z&V together
       goodword=True
       for w in z:
        if 'Z' in w and 'V' in w:
         goodword=False
       if goodword:
        s+=1
        print(x)
     return s
    
  • SageMath
    def A204089(n): return int(n==0) + 2^((n-1)/2)*chebyshev_U(n-1, sqrt(2))
    [A204089(n) for n in range(31)] # G. C. Greubel, Dec 21 2022

Formula

G.f.: (1-x)*(1-2*x)/(1-4*x+2*x^2).
a(n) = Sum_{i=0..n-1} a(i) * (2^(n-i)-1), with a(0)=1.
a(n) = 4*a(n-1) - 2*a(n-2), a(1)=1, a(2)=4.
G.f.: (1-x)*(1-2*x)/(1 - 4*x + 2*x^2) = 1/(1 + U(0)) where U(k)= 1 - 2^k/(1 - x/(x - 2^k/U(k+1) )); (continued fraction 3rd kind, 3-step). - Sergei N. Gladkovskii, Dec 05 2012
a(n) = ((2+sqrt(2))^n - (2-sqrt(2))^n)/(2*sqrt(2)). - Colin Barker, Dec 06 2015
a(n) = [n=0] + 2^((n-1)/2)*ChebyshevU(n-1, sqrt(2)). - G. C. Greubel, Dec 21 2022
E.g.f.: 1 + exp(2*x)*sinh(sqrt(2)*x)/sqrt(2). - Stefano Spezia, May 20 2024