cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A386464 Decimal expansion of the volume of an augmented truncated dodecahedron with unit edges.

Original entry on oeis.org

8, 7, 3, 6, 3, 7, 0, 9, 8, 7, 7, 7, 0, 4, 0, 7, 4, 6, 8, 5, 6, 1, 9, 1, 0, 0, 1, 2, 5, 1, 4, 1, 6, 7, 7, 1, 0, 1, 0, 0, 5, 8, 5, 5, 1, 1, 5, 4, 6, 6, 7, 2, 9, 2, 4, 9, 8, 1, 9, 0, 0, 2, 5, 5, 2, 8, 9, 6, 3, 8, 2, 0, 7, 7, 4, 9, 8, 8, 8, 2, 5, 4, 6, 4, 7, 5, 2, 2, 5, 1
Offset: 2

Views

Author

Paolo Xausa, Jul 25 2025

Keywords

Comments

The augmented truncated dodecahedron is Johnson solid J_68.

Examples

			87.3637098777040746856191001251416771010058551...
		

Crossrefs

Cf. A386465 (surface area).

Programs

  • Mathematica
    First[RealDigits[505/12 + 81/4*Sqrt[5], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J68", "Volume"], 10, 100]]

Formula

Equals 505/12 + 81*sqrt(5)/4 = 505/12 + 81*A204188.
Equals A377695 + A179590.
Equals the largest root of 36*x^2 - 3030*x - 10055.

A375804 a(n) = Lucas(n-1) * Lucas(n+1) * Fibonacci(2*n-1) * Fibonacci(2*n+1).

Original entry on oeis.org

12, 40, 1365, 19448, 381276, 6615103, 120241980, 2147070680, 38600066517, 692153278024, 12423591148332, 222908960952575, 4000098954110700, 71777766990248968, 1288007282149222101, 23112301389881302808, 414733773612913239420, 7442093184423393874495, 133542960264663589170972
Offset: 1

Views

Author

Amiram Eldar, Aug 29 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := LucasL[n-1] * LucasL[n+1] * Fibonacci[2*n-1] * Fibonacci[2*n+1]; Array[a, 20]
  • PARI
    lucas(n) = fibonacci(n-1) + fibonacci(n+1);
    a(n) = lucas(n-1) * lucas(n+1) * fibonacci(2*n-1) * fibonacci(2*n+1);

Formula

a(n) = A292696(n) * A064170(n+2).
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(5) - 2)/ 4 = A204188 - 1/2 (Ohtskua, 2024).
G.f.: -x^2*(-20+65*x+195*x^2-84*x^3-13*x^4+x^5)/ ( (1+x) *(x^2-3*x+1) *(x^2+7*x+1) *(x^2-18*x+1) ). - R. J. Mathar, Aug 30 2024

A356869 Decimal expansion of 4 / sqrt(5).

Original entry on oeis.org

1, 7, 8, 8, 8, 5, 4, 3, 8, 1, 9, 9, 9, 8, 3, 1, 7, 5, 7, 1, 2, 7, 3, 3, 8, 9, 3, 4, 9, 8, 5, 0, 2, 0, 9, 8, 8, 3, 5, 2, 4, 9, 4, 6, 8, 7, 6, 8, 9, 2, 2, 0, 5, 7, 9, 4, 1, 6, 7, 1, 7, 7, 9, 6, 3, 2, 8, 4, 1, 6, 7, 4, 0, 5, 1, 0, 2, 4, 3, 9, 1, 9, 5, 3, 1, 5, 3, 1, 5, 2, 6, 7, 0, 3, 0, 2, 5
Offset: 1

Views

Author

Michal Paulovic, Sep 01 2022

Keywords

Comments

The area of a golden rectangle inscribed in a unit circle.
The width and height of the rectangle are:
W = sqrt(2 - 2 / sqrt(5)) = A179290.
H = sqrt(2 + 2 / sqrt(5)) = A121570.

Examples

			1.7888543819998317...
		

Crossrefs

Programs

  • MATLAB
    cell2mat(struct2cell(struct(vpa(4 / sqrt(5), 105)))); ans(1:98)
  • Maple
    parse(substring(convert(evalf(4 / sqrt(5), 105), string), 1..98));
  • Mathematica
    RealDigits[4 / Sqrt[5], 10, 105][[1]][[Range[1, 97]]]

Formula

Equals [1; 1, 3, 1, 2] (periodic continued fraction expansion). - Peter Luschny, Sep 02 2022
Equals 1/A204188. - Alois P. Heinz, Sep 02 2022

A357715 Decimal expansion of sqrt(16 + 32 / sqrt(5)).

Original entry on oeis.org

5, 5, 0, 5, 5, 2, 7, 6, 8, 1, 8, 8, 4, 6, 9, 4, 1, 5, 2, 8, 2, 8, 8, 3, 8, 3, 2, 7, 6, 4, 3, 5, 5, 0, 7, 1, 8, 1, 0, 3, 5, 9, 7, 3, 4, 4, 0, 3, 2, 6, 3, 4, 6, 5, 3, 4, 6, 2, 7, 0, 3, 0, 6, 2, 4, 7, 6, 3, 8, 0, 7, 7, 5, 0, 6, 8, 6, 9, 1, 9, 4, 0, 2, 6, 3, 8, 1, 1, 9, 7, 2, 4, 4, 0, 2, 8, 0
Offset: 1

Views

Author

Michal Paulovic, Oct 10 2022

Keywords

Comments

The perimeter of a golden rectangle inscribed in a unit circle.
The width and height of the rectangle are:
W = sqrt(2 - 2 / sqrt(5)) = A179290.
H = sqrt(2 + 2 / sqrt(5)) = A121570.

Examples

			5.5055276818846941...
		

Crossrefs

Programs

  • Maple
    sqrt(16 + 32 / sqrt(5));
  • Mathematica
    Sqrt[16 + 32/Sqrt[5]]
  • PARI
    sqrt(16 + 32 / sqrt(5))

Formula

Equals (4 / sqrt(5)) * sqrt(5 + 2 * sqrt(5)) = A356869 * A019970.
Equals sqrt(5 + 2 * sqrt(5)) / (sqrt(5) / 4) = A019970 / A204188.
Equals 4 * sqrt(1 + 2 / sqrt(5)) = 4 * A019952.
Equals 4 / sqrt(5 - 2 * sqrt(5)) = 4 / A019934.
Showing 1-4 of 4 results.