A204199
Number of (strictly) 2-connected cubic graphs on 2n nodes.
Original entry on oeis.org
0, 0, 0, 1, 4, 24, 139, 1046, 9398, 101668, 1278335, 18248616, 290147706, 5071909933
Offset: 1
From _Ed Wynn_, Jul 22 2023: (Start)
For n=4, the unique 8-node cubic graph that is strictly 2-connected is:
o-o
/| |\
o-o o-o
\| |/
o-o
(End)
a(8)-a(14) from
Ed Wynn, Jul 22 2023
A364404
Number of (strictly) 1-connected cubic graphs on 2n nodes.
Original entry on oeis.org
0, 0, 0, 0, 1, 4, 29, 186, 1435, 12671, 131820, 1590900, 21940512, 339723835
Offset: 1
For n=5, the unique 10-node cubic graph that is strictly 1-connected is:
o o
/|\ /|\
o-o o-o o-o
\|/ \|/
o o
- G. Brinkmann, J. Goedgebeur and B. D. McKay, snarkhunter.
A199676
Number of minimally 3-connected non-isomorphic graphs on n vertices.
Original entry on oeis.org
1, 1, 3, 5, 18, 57, 285, 1513, 9824, 69536, 540622, 4494676
Offset: 4
- J. P. Costalonga, R. J. Kingan, and S. R. Kingan, Constructing minimally 3-connected graphs, arXiv:2012.12059 [math.CO], 2020-2021; Algorithms 14, no. 1: 9.
- Jens M. Schmidt, Combinatorial data.
- David Kofoed Wind, Connected Graphs with Fewest Spanning Trees, Bachelor Thesis, Spring 2011.
A059687
Number of basic circuits of nullity n.
Original entry on oeis.org
1, 1, 1, 2, 4, 14, 57
Offset: 1
n=2: 3 edges in parallel between 2 nodes; n=3: K_4; n=4: K_{3,3} and the trivalent graph with 6 nodes and 9 edges formed by the 1-skeleton of a triangular prism.
- R. M. Foster, Geometrical circuits of electrical networks, Transactions of the American Institute of Electrical Engineers, 51 (1932), 309-317.
- R. M. Foster, Topologic and algebraic considerations in network synthesis, pp. 8-18 in Proceedings of the Symposium on Modern Network Synthesis, New York, 1952, pp. 8-18. Polytechnic Institute of Brooklyn, New York, N. Y., 1952.
- A. Krapez, S. K. Simic, D. V. Tosic, Parastrophically uncancellable quasigroup equations, Aequat. Math. 79 (3) (2010) 261-280 doi:10.1007/s00010-010-0016-3
Showing 1-4 of 4 results.
Comments