cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204200 INVERT transform of [1, 0, 1, 3, 9, 27, 81, ...].

Original entry on oeis.org

1, 1, 2, 6, 19, 60, 189, 595, 1873, 5896, 18560, 58425, 183916, 578949, 1822473, 5736961, 18059374, 56849086, 178955183, 563332848, 1773314929, 5582216355, 17572253481, 55315679788, 174128175064, 548137914373, 1725482812088
Offset: 1

Views

Author

Michael Somos, Jan 12 2012

Keywords

Comments

Same as A052544 except for beginning with an additional 1.
Number of permutations of length n>=0 avoiding the partially ordered pattern (POP) {1>2, 1>3, 4>2} of length 4. That is, number of length n permutations having no subsequences of length 4 in which the first element is larger than the second and third elements, and the fourth element is larger than the second element. - Sergey Kitaev, Dec 09 2020

Examples

			x + x^2 + 2*x^3 + 6*x^4 + 19*x^5 + 60*x^6 + 189*x^7 + 595*x^8 + ...
		

Crossrefs

Cf. A052544.

Programs

  • Haskell
    a204200 n = a204200_list !! (n-1)
    a204200_list = 1 : 1 : 2 : zipWith (+) a204200_list (tail $ zipWith (-)
       (map (* 4) (tail a204200_list)) (map (* 3) a204200_list))
    -- Reinhard Zumkeller, Jan 16 2012
  • Mathematica
    LinearRecurrence[{4, -3, 1}, {1, 1, 2}, 29] (* or *)
    Rest@ CoefficientList[Series[-1 + 1/(1 - x - x^3/(1 - 3 x)), {x, 0, 29}], x] (* Michael De Vlieger, May 06 2019 *)
  • PARI
    {a(n) = if( n<1, n = 1-n; polcoeff( (1 - x)^2 / (1 - 3*x + 4*x^2 - x^3) + x * O(x^n), n), polcoeff( x * (1 - 3*x + x^2) / (1 - 4*x + 3*x^2 - x^3) + x * O(x^n), n))}
    

Formula

a(n) = 4*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: -1 + 1 / (1 - x - x^3 / (1 - 3*x)) = x * (1 + x / (1 - x - x / (1 - x)^2)) = x * (1 - 3*x + x^2) / (1 - 4*x + 3*x^2 - x^3).
a(n + 2) = A052544(n). That is, A052544 is the same except for extra 1 term and origin.
a(n+1) = Sum_{k, 0<=k<=n} A204533(n,k). - Philippe Deléham, Jan 18 2012