cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A204533 Triangle T(n,k), read by rows, given by (0, 1, 2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 8, 7, 3, 1, 0, 21, 22, 12, 4, 1, 0, 55, 67, 43, 18, 5, 1, 0, 144, 200, 147, 72, 25, 6, 1, 0, 377, 588, 486, 271, 110, 33, 7, 1, 0, 987, 1708, 1566, 976, 450, 158, 42, 8, 1
Offset: 0

Views

Author

Philippe Deléham, Jan 16 2012

Keywords

Comments

Riordan array (1, x*(1-x)^2/(1-3*x+x^2)).
Antidiagonal sums: see A052946.

Examples

			Triangle begins:
  1;
  0,   1;
  0,   1,   1;
  0,   3,   2,   1;
  0,   8,   7,   3,  1;
  0,  21,  22,  12,  4,  1;
  0,  55,  67,  43, 18,  5, 1;
  0, 144, 200, 147, 72, 25, 6, 1;
		

Crossrefs

Cf. diagonals: A000007, A088305, A000012, A001477, A055998.

Programs

  • Mathematica
    Table[Sum[Binomial[k, m - 1] Binomial[n - 2 m + k, n - k - 1], {k, 0, n - 1}] + Boole[n == m == 0], {n, 0, 9}, {m, 0, n}] // Flatten (* Michael De Vlieger, Sep 26 2018 *)
  • Maxima
    T(n,m):= if n=0 and m=0 then 1 else sum(binomial(k,m-1)*binomial(n-2*m+k,n-k-1),k,0,n-1); /* Vladimir Kruchinin, Sep 27 2018 */
    
  • PARI
    T(n,k) = if ((n==0) && (k==0), 1, sum(i=0, n-1, binomial(i,k-1)*binomial(n-2*k+i,n-i-1))); \\ Michel Marcus, Sep 27 2018

Formula

Sum_{k=0..n} T(n,k) = A204200(n+1).
T(n,k) = 3*T(n-1,k) + T(n-1,k-1) + T(n-3,k-1) - T(n-2,k) - 2*T(n-2,k-1).
G.f.: (-1 + 3*x - x^2)/(-1 + 3*x - x^2 + x*y - 2*x^2*y + x^3*y). - R. J. Mathar, Aug 11 2015
T(n,m) = Sum_{k=0..n-1} C(k,m-1)*C(n-2*m+k,n-k-1), T(0,0)=1. - Vladimir Kruchinin, Sep 27 2018

A111053 Number of permutations which avoid the patterns 1324 and (2143 with Bruhat restriction {2<->3}). Also the number of permutations whose graphs are acyclic.

Original entry on oeis.org

1, 2, 6, 22, 89, 379, 1661, 7405, 33367, 151398, 690147, 3156112, 14465746, 66409493, 305232025, 1404129530, 6463476538, 29767212095, 137142651679, 632021380433, 2913316615372, 13431328632593, 61931182541194, 285592218851606, 1317104663887309, 6074682489939359, 28018852961838675, 129239701278757210
Offset: 1

Views

Author

Steve Butler, Oct 06 2005

Keywords

Examples

			x + 2*x^2 + 6*x^3 + 22*x^4 + 89*x^5 + 379*x^6 + 1661*x^7 + 7405*x^8 + ...
		

References

  • S. Kitaev, Patterns in Permutations and Words, Springer-Verlag, 2011. See p. 399, Table A.7.

Crossrefs

Cf. A204200.

Programs

  • Mathematica
    a = DifferenceRoot[Function[{a, n}, {(4n^2 + 46n + 60)a[n] + (-9n^2 - 105n - 156)a[n+1] + (22n^2 + 256n + 372)a[n+2] + (-9n^2 - 111n - 240)a[n+3] + (n+4)(n+9)a[n+4] == 0, a[1] == 1, a[2] == 2, a[3] == 6, a[4] == 22}]];
    Array[a, 28] (* Jean-François Alcover, Dec 17 2018 *)
  • PARI
    x='x+O('x^66);
    gf=((1-x)*(1-4*x-2*x^2)-(1-5*x)*sqrt(1-4*x))/(2*(1-5*x+2*x^2-x^3));
    Vec(gf) /* Joerg Arndt, Jun 25 2011 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 2 * x * (1 - 4*x - x^2) / ((1 - x) * (1 - 4*x - 2*x^2) + (1 - 5*x) * sqrt(1 - 4*x + x * O(x^n))), n))} /* Michael Somos, Jan 12 2012 */

Formula

G.f.: ((1-x)*(1-4*x-2*x^2)-(1-5*x)*sqrt(1-4*x))/(2*(1-5*x+2*x^2-x^3)). - Ralf Stephan, May 09 2007
G.f.: 2 * x * (1 - 4*x - x^2) / ((1 - x) * (1 - 4*x - 2*x^2) + (1 - 5*x) * sqrt(1 - 4*x)). - Michael Somos, Jan 12 2012
G.f. is the power series composition of g.f. A204200 and g.f. A000108 (Catalan) with offset 1. - Michael Somos, Jan 12 2012
Conjecture: n*(n+5)*a(n) +3*(20-13*n-3*n^2)*a(n-1) +2*(11*n^2+40*n-150)*a(n-2) +3*(40-11*n-3*n^2)*a(n-3) +2*(n+6)*(2*n-5)*a(n-4)=0. - R. J. Mathar, Aug 14 2012

Extensions

More terms from Joerg Arndt, Jun 25 2011
Showing 1-2 of 2 results.