cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204217 G.f.: Sum_{n>=1} n * x^(n*(n+1)/2) / (1 - x^n).

Original entry on oeis.org

1, 1, 3, 1, 3, 4, 3, 1, 6, 5, 3, 4, 3, 5, 11, 1, 3, 8, 3, 6, 12, 5, 3, 4, 8, 5, 12, 8, 3, 13, 3, 1, 12, 5, 15, 12, 3, 5, 12, 6, 3, 15, 3, 9, 26, 5, 3, 4, 10, 10, 12, 9, 3, 17, 18, 8, 12, 5, 3, 17, 3, 5, 28, 1, 18, 19, 3, 9, 12, 17, 3, 13, 3, 5, 27, 9, 21, 20, 3, 6, 21, 5, 3, 19, 18, 5, 12, 12, 3
Offset: 1

Views

Author

Paul D. Hanna, Jan 12 2012

Keywords

Comments

Conjecture: a(n) is the total number of parts in all partitions of n into consecutive parts. - Omar E. Pol, Apr 23 2017
Conjecture: row sums of A285914. - Omar E. Pol, Apr 30 2017
(The conjectures are true. See Joerg Arndt's proof in the Links section.) - Omar E. Pol, Jun 14 2017
Row lengths of A299765. - Omar E. Pol, Jul 23 2018
From Omar E. Pol, Oct 20 2019: (Start)
Row sums of A328361.
a(n) = 3 iff n is an odd prime. (End)

Examples

			G.f.: A(x) = x + x^2 + 3*x^3 + x^4 + 3*x^5 + 4*x^6 + 3*x^7 + x^8 + ...
follows by expanding A(x) = x/(1-x) + 2*x^3/(1-x^2) + 3*x^6/(1-x^3) + 4*x^10/(1-x^4) + ...
Also, by a Ramanujan identity:
A(x)*Theta4(x)^2 = x*(1-x)/(1+x)^2 - 2*x^3*(1-x^2)/(1+x^2)^2 + 3*x^6*(1-x^3)/(1+x^3)^2 - 4*x^10*(1-x^4)/(1+x^4)^2 + 5*x^15*(1-x^5)/(1+x^5)^2 + ...
For n = 15 there are four partitions of 15 into consecutive parts: [15], [8, 7], [6, 5, 4] and [5, 4, 3, 2, 1]. The total number of parts is 11, so a(15) = 11. - _Omar E. Pol_, Apr 23 2017
From _Omar E. Pol_, Nov 30 2020: (Start)
Illustration of initial terms:
                         Diagram
n   a(n)                       _
1     1                      _|1
2     1                    _|1 _
3     3                  _|1  |2
4     1                _|1   _|
5     3              _|1    |2 _
6     4            _|1     _| |3
7     3          _|1      |2  |
8     1        _|1       _|  _|
9     6      _|1        |2  |3 _
10    5     |1          |   | |4
...
a(n) is the total length of all vertical line segments that are below and that share one vertex with the horizontal line segments that are in the n-th level of the diagram. For more information about the diagram see A286001 and A237593. (End)
		

Crossrefs

Programs

  • Mathematica
    terms = 1024; Sum[n*x^(n*(n+1)/2)/(1-x^n), {n, 1, Ceiling[Sqrt[2*terms]]}] + O[x]^(terms+1) // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Jun 04 2017 *)
    Table[Sum[If[n > k*(k-1)/2 && IntegerQ[n/k - (k-1)/2], k, 0], {k, Divisors[2*n]}], {n, 1, 100}] (* Vaclav Kotesovec, Oct 23 2024 *)
  • PARI
    {a(n)=polcoeff(sum(m=1,n,m*x^(m*(m+1)/2)/(1-x^m+x*O(x^n))),n)}
    
  • PARI
    {a(n)=local(Theta4=1+2*sum(m=1,sqrtint(n+1),(-x)^(m^2))+x*O(x^n));polcoeff(1/Theta4^2*sum(m=1,sqrtint(2*n+1),(-1)^(m-1)*m*x^(m*(m+1)/2)*(1-x^m)/(1+x^m+x*O(x^n))^2),n)}
    
  • PARI
    a(n) = {nb = 0; forpart(v=n, nbp = #v; if ((#Set(v)==#v) && (v[nbp] - v[1] == #v-1), nb += #v); ); nb; } \\ Michel Marcus, Apr 23 2017
    
  • PARI
    a(n) = {my(i=2, t=1); n--; while(n>0, t += (i*(n%i==0)); n-=i; i++); t} \\ David A. Corneth, Apr 28 2017

Formula

a(k) = 1 iff k = 2^n for n>=0.
G.f.: (1/Theta4(x)^2) * Sum_{n>=1} (-1)^(n-1)* n*x^(n*(n+1)/2) * (1 - x^n)/(1 + x^n)^2 where Theta4(x) = 1 + 2*Sum_{n>=1} (-x)^(n^2), due to an identity of Ramanujan.
Conjecture: a(n) = Sum_{k=1..n} k*A285898(n,k). - R. J. Mathar, Apr 30 2017
Conjecture: a(n) = Sum_{k=1..A003056(n)} k*A237048(n,k). - Omar E. Pol, Apr 30 2017
(The conjectures are true. See Joerg Arndt's proof in the Links section.) - Omar E. Pol, Jun 14 2017
Sum_{k=1..n} a(k) ~ 2^(3/2) * n^(3/2) / 3. - Vaclav Kotesovec, Oct 23 2024