cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204221 Integers of the form (N^2 - 1) / 15.

Original entry on oeis.org

0, 1, 8, 13, 17, 24, 45, 56, 64, 77, 112, 129, 141, 160, 209, 232, 248, 273, 336, 365, 385, 416, 493, 528, 552, 589, 680, 721, 749, 792, 897, 944, 976, 1025, 1144, 1197, 1233, 1288, 1421, 1480, 1520, 1581, 1728, 1793, 1837, 1904, 2065, 2136, 2184, 2257, 2432
Offset: 0

Views

Author

Michael Somos, Jan 13 2012

Keywords

Comments

Equivalently, numbers in increasing order of the form m(15m+2) or m(15m+8)+1, where m = 0,-1,1,-2,2,-3,3,... [Bruno Berselli, Nov 27 2012]
The sequence terms occur as exponents in the expansion of the identity Product_{n >= 0} (1 - x^(20*n+1))*(1 - x^(20*n+19))*(1 - x^(20*n+8))*(1 - x^(20*n+12))*(1 - x^(20*n+9))*(1 - x^(20*n+11))*(1 - x^(10*n+10)) = Sum_{n >= 0} x^(n^2+n)*Product_{k >= 2*n+1} 1 - x^k = 1 - x - x^8 + x^13 + x^17 - - + + .... See Andrews et al., p. 591, Exercise 6(c). - Peter Bala, Feb 22 2021.

References

  • George E. Andrews, Richard Askey, and Ranjan Roy, Special Functions, Cambridge University Press, 1999.

Crossrefs

Cf. A204220, A204542 (square roots of 15*a(n)+1), A379210.
Cf. similar sequences listed in A219257.

Programs

  • Magma
    [n: n in [0..2500] | IsSquare(15*n+1)]; // Bruno Berselli, Nov 23 2012
    
  • Magma
    /* By comment: */ s:=[0, 1] cat &cat[[t*(15*t+2), t*(15*t+8)+1]: t in [-n,n], n in [1..13]]; Sort(s); // Bruno Berselli, Nov 27 2012
  • Maple
    A204221 := proc(q) local n;
    for n from 0 to q do
     if type(sqrt(15*n+1), integer) then print(n);
    fi; od; end:
    A204221(2500); # Peter Bala, Dec 18 2024
  • Mathematica
    Select[Range[0, 2500], IntegerQ[Sqrt[15 # + 1]] &] (* Bruno Berselli, Nov 23 2012 *)
  • PARI
    {a(n) = (15*n^2 + n*[8, 2, 28, 22][n%4 + 1] + 12) \ 16}
    

Formula

|A204220(n)| is the characteristic function of the numbers in this sequence.
a(-1 - n) = a(n).
G.f. x*(x^2-x+1)*(x^4+8*x^3+12*x^2+8*x+1) / ( (1+x)^2*(1+x^2)^2*(1-x)^3 ). - R. J. Mathar, Jan 28 2012
a(n) = (30*n-10*i^(n(n-1))+3*(-1)^n+7)*(30*n-10*i^(n(n-1))+3*(-1)^n+23)/960, where i=sqrt(-1). - Bruno Berselli, Nov 28 2012
Sum_{n>=1} 1/a(n) = 15/4 - cot(2*Pi/15)*Pi/2 - Pi/(2*sqrt(3)) + sqrt(1+2/sqrt(5))*Pi/2. - Amiram Eldar, Mar 15 2022
From Peter Bala, Dec 17 2024: (Start)
a(n) is quasi-polynomial in n: for n >= 0,
a(4*n+1) = 15*n^2 + 8*n + 1; a(4*n+2) = 15*n^2 + 22*n + 8;
a(4*n+3) = 15*n^2 + 28*n + 13; a(4*n+4) = 15*n^2 + 32*n + 17.
For 1 <= k <= 4, a(4*n+k) = (N_k(n)^2 - 1)/15, where N_1(n) = 15*n + 4, N_2(n) = 15*n + 11, N_3(n) = 15*n + 14 and N_4(n) = 15*n + 16. (End)