A204249 Permanent of the n-th principal submatrix of A003057.
1, 2, 17, 336, 12052, 685080, 56658660, 6428352000, 958532774976, 181800011433600, 42745508545320000, 12203347213269273600, 4158410247782904833280, 1667267950805177583582720, 776990110000329481864608000, 416483579190482716042690560000
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..36
- Zhi-Wei Sun, Arithmetic properties of some permanents, arXiv:2108.07723 [math.GM], 2021.
Programs
-
Maple
with(LinearAlgebra): a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> i+j))): seq(a(n), n=0..16); # Alois P. Heinz, Nov 14 2016
-
Mathematica
f[i_, j_] := i + j; m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] TableForm[m[8]] (* 8x8 principal submatrix *) Flatten[Table[f[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]] (* A003057 *) Permanent[m_] := With[{a = Array[x, Length[m]]}, Coefficient[Times @@ (m.a), Times @@ a]]; Table[Permanent[m[n]], {n, 1, 15}] (* A204249 *)
-
PARI
{a(n) = matpermanent(matrix(n, n, i, j, i+j))} for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Dec 21 2018
Formula
From Vaclav Kotesovec, Dec 01 2016: (Start)
a(n) ~ c * d^n * (n!)^2 / sqrt(n), where d = A278300 = 2.455407482284127949... and c = 1.41510164826...
a(n) ~ c * d^n * n^(2*n + 1/2), where d = A278300/exp(2) = 0.332303267076220516... and c = 8.89134588451...
(End)
Extensions
a(0)=1 prepended and one more term added by Alois P. Heinz, Nov 14 2016
Comments