cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A278300 Decimal expansion of a constant related to the asymptotics of A204249.

Original entry on oeis.org

2, 4, 5, 5, 4, 0, 7, 4, 8, 2, 2, 8, 4, 1, 2, 7, 9, 4, 9, 3, 7, 5, 7, 6, 7, 4, 0, 2, 6, 2, 0, 1, 7, 6, 0, 9, 8, 9, 4, 9, 3, 5, 2, 6, 4, 0, 8, 8, 3, 9, 2, 3, 5, 8, 8, 0, 6, 9, 7, 0, 5, 6, 0, 1, 1, 2, 8, 2, 0, 8, 9, 3, 8, 9, 3, 9, 9, 7, 3, 9, 8, 6, 4, 7, 5, 9, 0, 9, 8, 7, 0, 7, 6, 7, 7, 7, 2, 3, 0, 7, 1, 2, 5, 2, 6
Offset: 1

Views

Author

Vaclav Kotesovec, Dec 01 2016

Keywords

Examples

			2.4554074822841279493757674026201760989493526408839235880697056011282...
		

Crossrefs

Cf. A204249.

Programs

  • Mathematica
    RealDigits[-2*LambertW[-1, -1/(2*Exp[1/2])]^2 / (1 + 2*LambertW[-1, -1/(2*Exp[1/2])]), 10, 120][[1]] (* Vaclav Kotesovec, Jun 13 2021 *)

Formula

Equals limit n->infinity (A204249(n)/(n!)^2)^(1/n).
Equals -2*LambertW(-1, -1/(2*exp(1/2)))^2 / (1 + 2*LambertW(-1, -1/(2*exp(1/2)))). - Vaclav Kotesovec, Jun 13 2021

Extensions

More digits from Vaclav Kotesovec, Jun 13 2021

A085750 Determinant of the symmetric n X n matrix A defined by A[i,j] = |i-j| for 1 <= i,j <= n.

Original entry on oeis.org

0, -1, 4, -12, 32, -80, 192, -448, 1024, -2304, 5120, -11264, 24576, -53248, 114688, -245760, 524288, -1114112, 2359296, -4980736, 10485760, -22020096, 46137344, -96468992, 201326592, -419430400, 872415232, -1811939328, 3758096384, -7784628224, 16106127360
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 21 2003

Keywords

Comments

The determinant of the distance matrix of a tree with vertex set {1,2,...,n}. The distance matrix is the n X n matrix in which the (i,j)-term is the number of edges in the unique path from vertex i to vertex j. [The matrix A in the definition is the distance matrix of the path-tree 1-2-...-n.]
Hankel transform of A100071. Also Hankel transform of C(2n-2,n-1)(-1)^(n-1). Inverse binomial transform of -n. - Paul Barry, Jan 11 2007
Pisano period lengths: 1, 1, 3, 1, 20, 3, 42, 1, 9, 20, 55, 3,156, 42, 60, 1,136, 9,171, 20, ... - R. J. Mathar, Aug 10 2012

Crossrefs

Essentially the same as A001787.

Programs

Formula

a(n) = (-1)^(n+1) * (n-1) * 2^(n-2) = (-1)^(n+1) * A001787(n-1).
G.f.: -x/(1+2x)^2. - Paul Barry, Jan 11 2007
a(n) = -4*a(n-1) - 4*a(n-2); a(1) = 0, a(1) = -1. - Philippe Deléham, Nov 03 2008
E.g.f.: -x*exp(-2*x). - Stefano Spezia, Sep 30 2022

Extensions

More terms from Philippe Deléham, Nov 16 2008

A085807 Permanent of the symmetric n X n matrix A defined by A[i,j] = |i-j| for 1 <= i,j <= n.

Original entry on oeis.org

1, 0, 1, 4, 64, 1152, 34372, 1335008, 69599744, 4577345152, 374491314176, 37154032517376, 4402467119882240, 613680867638476800, 99443966100565999872, 18534733913629064343552, 3937496200758879526977536, 945776134421421651222708224, 255043190756805184245158084608
Offset: 0

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 24 2003

Keywords

Comments

Conjecture: For any odd prime p, we have a(p) == -1/2 (mod p). - Zhi-Wei Sun, Aug 30 2021
Conjecture: a(n) is the minimal permanent of an n X n symmetric Toeplitz matrix having 0 on the main diagonal and all the integers 1, 2, ..., n-1 off-diagonal. - Stefano Spezia, Jul 05 2024

Crossrefs

Programs

  • Maple
    with(LinearAlgebra):
    a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> abs(i-j)))):
    seq(a(n), n=0..18);  # Alois P. Heinz, Nov 14 2016
  • Mathematica
    a[n_]:=Permanent[Table[Abs[i - j], {i, n}, {j, n}]]; Join[{1}, Array[a, 18]] (* Stefano Spezia, Jun 28 2024 *)
  • PARI
    permRWNb(a)= n=matsize(a)[1]; if(n==1,return(a[1,1])); sg=1; in=vectorv(n); x=in; x=a[,n]-sum(j=1,n,a[,j])/2; p=prod(i=1,n,x[i]); for(k=1,2^(n-1)-1,sg=-sg; j=valuation(k,2)+1; z=1-2*in[j]; in[j]+=z; x+=z*a[,j]; p+=prod(i=1,n,x[i],sg)); return(2*(2*(n%2)-1)*p)
    for(n=1,22,a=matrix(n,n,i,j,abs(i-j));print1(permRWNb(a)",")) \\  Herman Jamke (hermanjamke(AT)fastmail.fm), May 14 2007
    
  • PARI
    {a(n) = matpermanent(matrix(n, n, i, j, abs(i-j)))}
    for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Aug 12 2021
    
  • Python
    from sympy import Matrix
    def A085807(n): return Matrix(n,n,[abs(j-k) for j in range(n) for k in range(n)]).per() # Chai Wah Wu, Sep 14 2021

Extensions

More terms from Vladeta Jovovic, Jul 26 2003
a(0)=1 prepended by Alois P. Heinz, Nov 14 2016

A278847 a(n) = permanent M_n where M_n is the n X n matrix m(i,j) = i^2 + j^2.

Original entry on oeis.org

1, 2, 41, 3176, 620964, 246796680, 174252885732, 199381727959680, 345875291854507584, 864860593764292790400, 2996169331694350840741440, 13929521390709644084719495680, 84659009841182126038701730464000, 658043094413184868424932006273344000
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 29 2016

Keywords

Comments

From Zhi-Wei Sun, Aug 19 2021: (Start)
I have proved that a(n) == (-1)^(n-1)*2*n! (mod 2n+1) whenever 2n+1 is prime.
Conjecture 1: If 2n+1 is composite, then a(n) == 0 (mod 2n+1).
Conjecture 2: If p = 4n+1 is prime, then the sum of those Product_{j=1..2n}(j^2-f(j)^2)^{-1} with f over all the derangements of {1,...,2n} is congruent to 1/(n!)^2 modulo p. (End)

Crossrefs

Programs

  • Maple
    with(LinearAlgebra):
    a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> i^2+j^2))):
    seq(a(n), n=0..16);  # after Alois P. Heinz
  • Mathematica
    Flatten[{1, Table[Permanent[Table[i^2+j^2, {i, 1, n}, {j, 1, n}]], {n, 1, 15}]}]
  • PARI
    a(n)={matpermanent(matrix(n, n, i, j, i^2 + j^2))} \\ Andrew Howroyd, Aug 21 2018

Formula

a(n) ~ c * d^n * (n!)^3 / n, where d = 3.809076776112918119... and c = 1.07739642254738...

A278845 a(n) = permanent M_n where M_n is the n X n matrix m(i,j) = (i+j)^2.

Original entry on oeis.org

1, 4, 145, 19016, 6176676, 4038562000, 4664347807268, 8698721212922496, 24535712762777208384, 99585504924929052560640, 559305193643176161735904320, 4211594966980674975033969246720, 41428564066728305721531962537124096, 520897493876353116313789796095643304960
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 29 2016

Keywords

Crossrefs

Programs

  • Maple
    with(LinearAlgebra):
    a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> (i+j)^2))):
    seq(a(n), n=0..16);  # Vaclav Kotesovec, Nov 29 2016, after Alois P. Heinz
  • Mathematica
    Flatten[{1, Table[Permanent[Table[(i+j)^2, {i, 1, n}, {j, 1, n}]], {n, 1, 15}]}]
  • PARI
    {a(n) = matpermanent(matrix(n, n, i, j, (i+j)^2))}
    for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Aug 09 2021

Formula

a(n) ~ c * d^n * (n!)^3 / n, where d = 6.14071825... and c = 1.79385445... - Vaclav Kotesovec, Aug 12 2021

A346934 Permanent of the 2n X 2n matrix with the (i,j)-entry i-j (i,j=1..2n).

Original entry on oeis.org

-1, 52, -18660, 24446016, -85000104000, 647188836814080, -9486416237249952000, 244072502056661870592000, -10282514440038927957603532800, 671904022157076034864609763328000, -65203712913305114275839483698454528000
Offset: 1

Views

Author

Zhi-Wei Sun, Aug 08 2021

Keywords

Comments

The author has proved that a((p-1)/2) == 2 (mod p) for any odd prime p.
Conjecture 1: (-1)^n*a(n) > 0 for all n > 0. Also, a(n) == 0 (mod 2n+1) if 2n+1 is composite.
For any permutation f of {1,...,2n+1}, clearly Product_{j=1..2n+1} (j-f(j)) = -Product_{k=1..2n+1} (k-f^{-1}(k)). Thus the permanent of the matrix [i-j]_{1<=i,j<=2n+1} vanishes.
It is easy to see that per[i+j]{1<=i,j<n} = per[i+(n-j)]{1<=i,jA204249(2n) == a(n) (mod 2n+1).
Let D(2n) be the set of all derangements of {1,...,2n}. Clearly, a(n) is the sum of those Product_{j=1..2n}(j-f(j)) with f in the set D(2n).
Conjecture 2: For any odd prime p, the sum of those 1/Product_{j=1..p-1}(j-f(j)) with f in the set D(p-1) is congruent to (-1)^((p-1)/2) modulo p.

Examples

			a(1) is the permanent of the matrix [1-1,1-2;2-1,2-2] = [0,-1;1,0], which equals -1.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=Permanent[Table[i-j,{i,1,2n},{j,1,2n}]];
    Table[a[n],{n,1,11}]
  • PARI
    a(n) = matpermanent(matrix(2*n, 2*n, i, j, i-j)); \\ Michel Marcus, Aug 08 2021

A278925 a(n) = permanent M_n where M_n is the n X n matrix m(i,j) = i^3 + j^3.

Original entry on oeis.org

1, 2, 113, 38736, 46311652, 143820883800, 966462062838180, 12412328008727861760, 278484670746890475310656, 10197331743850942940587152000, 577793817845799602600135280168000, 48534819511412868687827815575204633600, 5834998526939444017550860154062183732711680
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 01 2016

Keywords

Crossrefs

Programs

  • Maple
    with(LinearAlgebra):
    a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> i^3+j^3))):
    seq(a(n), n=0..16);
  • Mathematica
    Flatten[{1, Table[Permanent[Table[i^3+j^3, {i, 1, n}, {j, 1, n}]], {n, 1, 15}]}]
  • PARI
    {a(n) = matpermanent(matrix(n, n, i, j, i^3+j^3))}
    for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Dec 21 2018

Formula

a(n) ~ c * d^n * n!^4 / n^(3/2), where d = 6.538385468679... and c = 0.84959670006...

A278926 a(n) = permanent M_n where M_n is the n X n matrix m(i,j) = i^4 + j^4.

Original entry on oeis.org

1, 2, 353, 561608, 4341274884, 111107400842568, 7493918659070379300, 1139021252689549522419840, 348457223545199873458486125120, 196982631587037086047232203674775680, 192443334239172066295878807351087122210880, 307899710379447999264505625949360598523097530880
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 01 2016

Keywords

Crossrefs

Programs

  • Maple
    with(LinearAlgebra):
    a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> i^4+j^4))):
    seq(a(n), n=0..16);
  • Mathematica
    Flatten[{1, Table[Permanent[Table[i^4+j^4, {i, 1, n}, {j, 1, n}]], {n, 1, 15}]}]
  • PARI
    {a(n) = matpermanent(matrix(n, n, i, j, i^4+j^4))}
    for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Dec 21 2018

Formula

a(n) ~ c * d^n * n!^5 / n^2, where d = 11.83108... and c = 0.68284...

A278838 a(n) = det M_n where M_n is the n X n matrix m(i,j) = A000041(i+j).

Original entry on oeis.org

1, 2, 1, -2, 2, 3, 0, -3, -1, 4, -3, -3, 2, -1, -12, 12, 11, 6, -5, 0, 5, -4, -9, -11, 1, 4, -20, -20, -4, 9, -18, -27, 8, 52, -73, 83, 245, 88, -60, -217, -157, 74, -30, -99, 57, 74, -29, -36, 101, 320, -205, -206, 125, -109, -27, 139, -203, -644, -629, 723
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 29 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[{1, Table[Det[Table[PartitionsP[i+j], {i, n}, {j, n}]], {n, 1, 100}]}]

A278839 a(n) = det M_n where M_n is the n X n matrix m(i,j) = A000009(i+j).

Original entry on oeis.org

1, 1, -2, -1, 1, -1, 0, 1, 2, 1, -1, -1, -1, 3, -3, -7, -2, 3, -1, 0, 1, 1, -2, 2, 3, -2, 0, 0, -2, -3, -1, 0, 9, -5, -4, 0, 1, -1, -3, 1, 4, 3, 3, -7, -3, 3, 5, -48, 75, 143, 194, -272, 62, -31, -65, 46, 22, 3, -10, 2, 15, -15, -13, -2, 11, -1, -35, -26, 108
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 29 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[{1, Table[Det[Table[PartitionsQ[i+j], {i, n}, {j, n}]], {n, 1, 100}]}]
Showing 1-10 of 17 results. Next