A278300 Decimal expansion of a constant related to the asymptotics of A204249.
2, 4, 5, 5, 4, 0, 7, 4, 8, 2, 2, 8, 4, 1, 2, 7, 9, 4, 9, 3, 7, 5, 7, 6, 7, 4, 0, 2, 6, 2, 0, 1, 7, 6, 0, 9, 8, 9, 4, 9, 3, 5, 2, 6, 4, 0, 8, 8, 3, 9, 2, 3, 5, 8, 8, 0, 6, 9, 7, 0, 5, 6, 0, 1, 1, 2, 8, 2, 0, 8, 9, 3, 8, 9, 3, 9, 9, 7, 3, 9, 8, 6, 4, 7, 5, 9, 0, 9, 8, 7, 0, 7, 6, 7, 7, 7, 2, 3, 0, 7, 1, 2, 5, 2, 6
Offset: 1
Examples
2.4554074822841279493757674026201760989493526408839235880697056011282...
Links
- Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 187.
Crossrefs
Cf. A204249.
Programs
-
Mathematica
RealDigits[-2*LambertW[-1, -1/(2*Exp[1/2])]^2 / (1 + 2*LambertW[-1, -1/(2*Exp[1/2])]), 10, 120][[1]] (* Vaclav Kotesovec, Jun 13 2021 *)
Formula
Equals limit n->infinity (A204249(n)/(n!)^2)^(1/n).
Equals -2*LambertW(-1, -1/(2*exp(1/2)))^2 / (1 + 2*LambertW(-1, -1/(2*exp(1/2)))). - Vaclav Kotesovec, Jun 13 2021
Extensions
More digits from Vaclav Kotesovec, Jun 13 2021
Comments