cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A085750 Determinant of the symmetric n X n matrix A defined by A[i,j] = |i-j| for 1 <= i,j <= n.

Original entry on oeis.org

0, -1, 4, -12, 32, -80, 192, -448, 1024, -2304, 5120, -11264, 24576, -53248, 114688, -245760, 524288, -1114112, 2359296, -4980736, 10485760, -22020096, 46137344, -96468992, 201326592, -419430400, 872415232, -1811939328, 3758096384, -7784628224, 16106127360
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 21 2003

Keywords

Comments

The determinant of the distance matrix of a tree with vertex set {1,2,...,n}. The distance matrix is the n X n matrix in which the (i,j)-term is the number of edges in the unique path from vertex i to vertex j. [The matrix A in the definition is the distance matrix of the path-tree 1-2-...-n.]
Hankel transform of A100071. Also Hankel transform of C(2n-2,n-1)(-1)^(n-1). Inverse binomial transform of -n. - Paul Barry, Jan 11 2007
Pisano period lengths: 1, 1, 3, 1, 20, 3, 42, 1, 9, 20, 55, 3,156, 42, 60, 1,136, 9,171, 20, ... - R. J. Mathar, Aug 10 2012

Crossrefs

Essentially the same as A001787.

Programs

Formula

a(n) = (-1)^(n+1) * (n-1) * 2^(n-2) = (-1)^(n+1) * A001787(n-1).
G.f.: -x/(1+2x)^2. - Paul Barry, Jan 11 2007
a(n) = -4*a(n-1) - 4*a(n-2); a(1) = 0, a(1) = -1. - Philippe Deléham, Nov 03 2008
E.g.f.: -x*exp(-2*x). - Stefano Spezia, Sep 30 2022

Extensions

More terms from Philippe Deléham, Nov 16 2008

A085807 Permanent of the symmetric n X n matrix A defined by A[i,j] = |i-j| for 1 <= i,j <= n.

Original entry on oeis.org

1, 0, 1, 4, 64, 1152, 34372, 1335008, 69599744, 4577345152, 374491314176, 37154032517376, 4402467119882240, 613680867638476800, 99443966100565999872, 18534733913629064343552, 3937496200758879526977536, 945776134421421651222708224, 255043190756805184245158084608
Offset: 0

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 24 2003

Keywords

Comments

Conjecture: For any odd prime p, we have a(p) == -1/2 (mod p). - Zhi-Wei Sun, Aug 30 2021
Conjecture: a(n) is the minimal permanent of an n X n symmetric Toeplitz matrix having 0 on the main diagonal and all the integers 1, 2, ..., n-1 off-diagonal. - Stefano Spezia, Jul 05 2024

Crossrefs

Programs

  • Maple
    with(LinearAlgebra):
    a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> abs(i-j)))):
    seq(a(n), n=0..18);  # Alois P. Heinz, Nov 14 2016
  • Mathematica
    a[n_]:=Permanent[Table[Abs[i - j], {i, n}, {j, n}]]; Join[{1}, Array[a, 18]] (* Stefano Spezia, Jun 28 2024 *)
  • PARI
    permRWNb(a)= n=matsize(a)[1]; if(n==1,return(a[1,1])); sg=1; in=vectorv(n); x=in; x=a[,n]-sum(j=1,n,a[,j])/2; p=prod(i=1,n,x[i]); for(k=1,2^(n-1)-1,sg=-sg; j=valuation(k,2)+1; z=1-2*in[j]; in[j]+=z; x+=z*a[,j]; p+=prod(i=1,n,x[i],sg)); return(2*(2*(n%2)-1)*p)
    for(n=1,22,a=matrix(n,n,i,j,abs(i-j));print1(permRWNb(a)",")) \\  Herman Jamke (hermanjamke(AT)fastmail.fm), May 14 2007
    
  • PARI
    {a(n) = matpermanent(matrix(n, n, i, j, abs(i-j)))}
    for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Aug 12 2021
    
  • Python
    from sympy import Matrix
    def A085807(n): return Matrix(n,n,[abs(j-k) for j in range(n) for k in range(n)]).per() # Chai Wah Wu, Sep 14 2021

Extensions

More terms from Vladeta Jovovic, Jul 26 2003
a(0)=1 prepended by Alois P. Heinz, Nov 14 2016

A204249 Permanent of the n-th principal submatrix of A003057.

Original entry on oeis.org

1, 2, 17, 336, 12052, 685080, 56658660, 6428352000, 958532774976, 181800011433600, 42745508545320000, 12203347213269273600, 4158410247782904833280, 1667267950805177583582720, 776990110000329481864608000, 416483579190482716042690560000
Offset: 0

Views

Author

Clark Kimberling, Jan 14 2012

Keywords

Comments

I have proved that for any odd prime p we have a(p) == p (mod p^2). - Zhi-Wei Sun, Aug 30 2021

Crossrefs

Programs

  • Maple
    with(LinearAlgebra):
    a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> i+j))):
    seq(a(n), n=0..16);  # Alois P. Heinz, Nov 14 2016
  • Mathematica
    f[i_, j_] := i + j;
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8x8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 12}, {i, 1, n}]]  (* A003057 *)
    Permanent[m_] :=
      With[{a = Array[x, Length[m]]},
       Coefficient[Times @@ (m.a), Times @@ a]];
    Table[Permanent[m[n]], {n, 1, 15}]  (* A204249 *)
  • PARI
    {a(n) = matpermanent(matrix(n, n, i, j, i+j))}
    for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Dec 21 2018

Formula

From Vaclav Kotesovec, Dec 01 2016: (Start)
a(n) ~ c * d^n * (n!)^2 / sqrt(n), where d = A278300 = 2.455407482284127949... and c = 1.41510164826...
a(n) ~ c * d^n * n^(2*n + 1/2), where d = A278300/exp(2) = 0.332303267076220516... and c = 8.89134588451...
(End)

Extensions

a(0)=1 prepended and one more term added by Alois P. Heinz, Nov 14 2016

A278845 a(n) = permanent M_n where M_n is the n X n matrix m(i,j) = (i+j)^2.

Original entry on oeis.org

1, 4, 145, 19016, 6176676, 4038562000, 4664347807268, 8698721212922496, 24535712762777208384, 99585504924929052560640, 559305193643176161735904320, 4211594966980674975033969246720, 41428564066728305721531962537124096, 520897493876353116313789796095643304960
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 29 2016

Keywords

Crossrefs

Programs

  • Maple
    with(LinearAlgebra):
    a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> (i+j)^2))):
    seq(a(n), n=0..16);  # Vaclav Kotesovec, Nov 29 2016, after Alois P. Heinz
  • Mathematica
    Flatten[{1, Table[Permanent[Table[(i+j)^2, {i, 1, n}, {j, 1, n}]], {n, 1, 15}]}]
  • PARI
    {a(n) = matpermanent(matrix(n, n, i, j, (i+j)^2))}
    for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Aug 09 2021

Formula

a(n) ~ c * d^n * (n!)^3 / n, where d = 6.14071825... and c = 1.79385445... - Vaclav Kotesovec, Aug 12 2021

A278925 a(n) = permanent M_n where M_n is the n X n matrix m(i,j) = i^3 + j^3.

Original entry on oeis.org

1, 2, 113, 38736, 46311652, 143820883800, 966462062838180, 12412328008727861760, 278484670746890475310656, 10197331743850942940587152000, 577793817845799602600135280168000, 48534819511412868687827815575204633600, 5834998526939444017550860154062183732711680
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 01 2016

Keywords

Crossrefs

Programs

  • Maple
    with(LinearAlgebra):
    a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> i^3+j^3))):
    seq(a(n), n=0..16);
  • Mathematica
    Flatten[{1, Table[Permanent[Table[i^3+j^3, {i, 1, n}, {j, 1, n}]], {n, 1, 15}]}]
  • PARI
    {a(n) = matpermanent(matrix(n, n, i, j, i^3+j^3))}
    for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Dec 21 2018

Formula

a(n) ~ c * d^n * n!^4 / n^(3/2), where d = 6.538385468679... and c = 0.84959670006...

A278926 a(n) = permanent M_n where M_n is the n X n matrix m(i,j) = i^4 + j^4.

Original entry on oeis.org

1, 2, 353, 561608, 4341274884, 111107400842568, 7493918659070379300, 1139021252689549522419840, 348457223545199873458486125120, 196982631587037086047232203674775680, 192443334239172066295878807351087122210880, 307899710379447999264505625949360598523097530880
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 01 2016

Keywords

Crossrefs

Programs

  • Maple
    with(LinearAlgebra):
    a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> i^4+j^4))):
    seq(a(n), n=0..16);
  • Mathematica
    Flatten[{1, Table[Permanent[Table[i^4+j^4, {i, 1, n}, {j, 1, n}]], {n, 1, 15}]}]
  • PARI
    {a(n) = matpermanent(matrix(n, n, i, j, i^4+j^4))}
    for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Dec 21 2018

Formula

a(n) ~ c * d^n * n!^5 / n^2, where d = 11.83108... and c = 0.68284...

A278857 a(n) = permanent M_n where M_n is the n X n matrix m(i,j) = (i-j)^2.

Original entry on oeis.org

1, 0, 1, 8, 676, 49600, 10335908, 2658757248, 1214367336000, 730771063280640, 642638269862752320, 736176718456263406080, 1122592471007868379259136, 2168016139899273930219233280, 5288852927890824307509101287680, 15889369670472598370104100032512000
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 29 2016

Keywords

Crossrefs

Programs

  • Maple
    with(LinearAlgebra):
    a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> (i-j)^2))):
    seq(a(n), n=0..16);  # Vaclav Kotesovec, Nov 30 2016, after Alois P. Heinz
  • Mathematica
    Flatten[{1, Table[Permanent[Table[(i-j)^2, {i, 1, n}, {j, 1, n}]], {n, 1, 15}]}]
  • PARI
    {a(n) = matpermanent(matrix(n, n, i, j, (i-j)^2))}
    for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Aug 12 2021

A278858 a(n) = permanent M_n where M_n is the n X n matrix m(i,j) = abs(i^2-j^2).

Original entry on oeis.org

1, 0, 9, 240, 36864, 7741440, 3363235524, 2203143038208, 2248347011420160, 3260265586467690240, 6578570637254005920000, 17755898734939822501524480, 62673017366111480630785474560, 282641923592380319367599892725760, 1599753679036773033206787507696238848
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 29 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[{1, Table[Permanent[Table[Abs[i^2-j^2], {i, 1, n}, {j, 1, n}]], {n, 1, 15}]}]
  • PARI
    {a(n) = matpermanent(matrix(n, n, i, j, abs(i^2-j^2)))}
    for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Aug 12 2021

A346949 Value of the permanent of the matrix [1-zeta^{j-k}]_{1<=j,k<=2n}, where zeta is any primitive 2n-th root of unity.

Original entry on oeis.org

4, 48, 1440, 80640, 7257600, 958003200, 174356582400, 41845579776000, 12804747411456000, 4865804016353280000, 2248001455555215360000, 1240896803466478878720000, 806582922253211271168000000, 609776689223427721003008000000, 530505719624382117272616960000000, 526261673867387060334436024320000000
Offset: 1

Views

Author

Zhi-Wei Sun, Aug 08 2021

Keywords

Comments

The author has proved that the exact value of a(n) is 2*(2n)!. Moreover, for any primitive n-th root zeta of unity, the permanent of the matrix [1-zeta^j*x_k]_{1<=j,k<=n} is n!(1-x_1..x_n).
Conjecture: Let zeta be a primitive 2n-th root of unity. Then the sum of those Product_{j=1..2n}(1-zeta^{j-f(j)})^{-1} with f over all the derangements of {1,...,2n} has the exact value ((2n-1)!!/2^n)^2.

Examples

			a(1) is the permanent of the matrix [1-(-1)^{1-1},1-(-1)^{1-2};1-(-1)^{2-1},1-(-1)^{2-2}] = [0,2;2,0], which equals 4.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]= Permanent[Table[1-E^(2*Pi*I*(j-k)/(2*n)),{j,1,2n},{k,1,2n}]];
    (* Though a(n) is actually an integer, Mathematica could not find its exact value for a general positive integer n. Instead, we may check approximate values of a(n) such as N[a[5],10] = 7257600.000. *)
  • PARI
    default(realprecision, 100); a(n) = round(real(matpermanent(matrix(2*n, 2*n, j, k, 1-exp(Pi*I*(j-k)/n))))) \\ Michel Marcus, Aug 08 2021

Formula

a(n) = 2*(2*n)!.

Extensions

a(16) from Vaclav Kotesovec, Aug 21 2021
Showing 1-9 of 9 results.