A085750
Determinant of the symmetric n X n matrix A defined by A[i,j] = |i-j| for 1 <= i,j <= n.
Original entry on oeis.org
0, -1, 4, -12, 32, -80, 192, -448, 1024, -2304, 5120, -11264, 24576, -53248, 114688, -245760, 524288, -1114112, 2359296, -4980736, 10485760, -22020096, 46137344, -96468992, 201326592, -419430400, 872415232, -1811939328, 3758096384, -7784628224, 16106127360
Offset: 1
Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 21 2003
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Emmanuel Briand, Luis Esquivias, Álvaro Gutiérrez, Adrián Lillo, and Mercedes Rosas, Determinant of the distance matrix of a tree, Proceedings of the 36th Conference on Formal Power Series and Algebraic Combinatorics (Bochum), Séminaire Lotharingien de Combinatoire 91B (2024) Article #29, 12 pp.
- R. L. Graham and H. O. Pollak, On the addressing problem for loop switching, Bell System Tech. J., 50, 1971, 2495-2519.
- Tanya Khovanova, Recursive Sequences
- R. Merris, The distance spectrum of a tree, J. Graph Theory, 14, No. 3, 1990,365-369.
- Index entries for linear recurrences with constant coefficients, signature (-4,-4).
-
seq((-1)^(n-1)*(n-1)*2^(n-2), n = 1 .. 31);
-
Table[-(-1)^n*2^(n - 2)*(n - 1), {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Jun 10 2011 *)
LinearRecurrence[{-4,-4},{0,-1},40] (* Harvey P. Dale, Apr 14 2014 *)
CoefficientList[Series[-x/(1 + 2 x)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 15 2014 *)
-
a(n) = (-1)^n*(1-n)<<(n-2) \\ Charles R Greathouse IV, Sep 30 2022
A204249
Permanent of the n-th principal submatrix of A003057.
Original entry on oeis.org
1, 2, 17, 336, 12052, 685080, 56658660, 6428352000, 958532774976, 181800011433600, 42745508545320000, 12203347213269273600, 4158410247782904833280, 1667267950805177583582720, 776990110000329481864608000, 416483579190482716042690560000
Offset: 0
-
with(LinearAlgebra):
a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> i+j))):
seq(a(n), n=0..16); # Alois P. Heinz, Nov 14 2016
-
f[i_, j_] := i + j;
m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
TableForm[m[8]] (* 8x8 principal submatrix *)
Flatten[Table[f[i, n + 1 - i],
{n, 1, 12}, {i, 1, n}]] (* A003057 *)
Permanent[m_] :=
With[{a = Array[x, Length[m]]},
Coefficient[Times @@ (m.a), Times @@ a]];
Table[Permanent[m[n]], {n, 1, 15}] (* A204249 *)
-
{a(n) = matpermanent(matrix(n, n, i, j, i+j))}
for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Dec 21 2018
a(0)=1 prepended and one more term added by
Alois P. Heinz, Nov 14 2016
A278847
a(n) = permanent M_n where M_n is the n X n matrix m(i,j) = i^2 + j^2.
Original entry on oeis.org
1, 2, 41, 3176, 620964, 246796680, 174252885732, 199381727959680, 345875291854507584, 864860593764292790400, 2996169331694350840741440, 13929521390709644084719495680, 84659009841182126038701730464000, 658043094413184868424932006273344000
Offset: 0
-
with(LinearAlgebra):
a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> i^2+j^2))):
seq(a(n), n=0..16); # after Alois P. Heinz
-
Flatten[{1, Table[Permanent[Table[i^2+j^2, {i, 1, n}, {j, 1, n}]], {n, 1, 15}]}]
-
a(n)={matpermanent(matrix(n, n, i, j, i^2 + j^2))} \\ Andrew Howroyd, Aug 21 2018
A374068
a(n) is the permanent of the symmetric Toeplitz matrix of order n whose element (i,j) equals the |i-j|-th prime or 0 if i = j.
Original entry on oeis.org
1, 0, 4, 24, 529, 16100, 919037, 75568846, 9196890092, 1491628025318, 317579623173729, 86997150829931700, 29703399282858184713, 12512837775355494800500, 6397110844644502402189404, 3875565057688532269985283868, 2747710211567246171588232074225, 2265312860218073375019946448731300
Offset: 0
a(4) = 529:
[0, 2, 3, 5]
[2, 0, 2, 3]
[3, 2, 0, 2]
[5, 3, 2, 0]
-
a[n_]:=Permanent[Table[If[i == j, 0, Prime[Abs[i - j]]], {i, 1, n}, {j, 1, n}]]; Join[{1},Array[a, 17]]
-
a(n) = matpermanent(matrix(n, n, i, j, if (i==j, 0, prime(abs(i-j))))); \\ Michel Marcus, Jun 28 2024
A278845
a(n) = permanent M_n where M_n is the n X n matrix m(i,j) = (i+j)^2.
Original entry on oeis.org
1, 4, 145, 19016, 6176676, 4038562000, 4664347807268, 8698721212922496, 24535712762777208384, 99585504924929052560640, 559305193643176161735904320, 4211594966980674975033969246720, 41428564066728305721531962537124096, 520897493876353116313789796095643304960
Offset: 0
-
with(LinearAlgebra):
a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> (i+j)^2))):
seq(a(n), n=0..16); # Vaclav Kotesovec, Nov 29 2016, after Alois P. Heinz
-
Flatten[{1, Table[Permanent[Table[(i+j)^2, {i, 1, n}, {j, 1, n}]], {n, 1, 15}]}]
-
{a(n) = matpermanent(matrix(n, n, i, j, (i+j)^2))}
for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Aug 09 2021
A374279
a(n) is the minimal determinant of an n X n symmetric Toeplitz matrix having 0 on the main diagonal and all the integers 1, 2, ..., n-1 off-diagonal.
Original entry on oeis.org
1, 0, -1, 4, -44, -946, -8281, -592100, -25369920, -511563816, -55400732937
Offset: 0
a(5) = -946:
[0, 1, 4, 2, 3]
[1, 0, 1, 4, 2]
[4, 1, 0, 1, 4]
[2, 4, 1, 0, 1]
[3, 2, 4, 1, 0]
-
a[0]=1; a[n_]:=Min[Table[Det[ToeplitzMatrix[Join[{0},Part[Permutations[Range[n-1]],i]]]],{i,(n-1)!}]]; Array[a,11,0]
A374280
a(n) is the maximal determinant of an n X n symmetric Toeplitz matrix having 0 on the main diagonal and all the integers 1, 2, ..., n-1 off-diagonal.
Original entry on oeis.org
1, 0, -1, 8, 28, 282, 27495, 581268, 17344692, 1246207300, 33366771123
Offset: 0
a(5) = 282:
[0, 3, 4, 2, 1]
[3, 0, 3, 4, 2]
[4, 3, 0, 3, 4]
[2, 4, 3, 0, 3]
[1, 2, 4, 3, 0]
-
a[0]=1; a[n_]:=Max[Table[Det[ToeplitzMatrix[Join[{0},Part[Permutations[Range[n-1]],i]]]],{i,(n-1)!}]]; Array[a,11,0]
A374281
a(n) is the maximal absolute value of the determinant of an n X n symmetric Toeplitz matrix having 0 on the main diagonal and all the integers 1, 2, ..., n-1 off-diagonal.
Original entry on oeis.org
1, 0, 1, 8, 44, 946, 27495, 592100, 25369920, 1246207300, 55400732937
Offset: 0
a(5) = 946:
[0, 1, 4, 2, 3]
[1, 0, 1, 4, 2]
[4, 1, 0, 1, 4]
[2, 4, 1, 0, 1]
[3, 2, 4, 1, 0]
-
a[0]=1; a[n_]:=Max[Table[Abs[Det[ToeplitzMatrix[Join[{0},Part[Permutations[Range[n-1]],i]]]]],{i,(n-1)!}]]; Array[a,11,0]
A374282
a(n) is the minimal absolute value of the determinant of a nonsingular n X n symmetric Toeplitz matrix having 0 on the main diagonal and all the integers 1, 2, ..., n-1 off-diagonal.
Original entry on oeis.org
1, 4, 12, 2, 13, 16, 21, 4, 1
Offset: 2
a(5) = 2:
[0, 4, 1, 2, 3]
[4, 0, 4, 1, 2]
[1, 4, 0, 4, 1]
[2, 1, 4, 0, 4]
[3, 2, 1, 4, 0]
-
a[n_]:=Min[Select[Table[Abs[Det[ToeplitzMatrix[Join[{0},Part[Permutations[Range[n-1]],i]]]]],{i,(n-1)!}],Positive]]; Array[a,9,2]
A353452
a(n) is the determinant of the n X n symmetric matrix M(n) that is defined as M[i,j] = abs(i - j) if min(i, j) < max(i, j) <= 2*min(i, j), and otherwise 0.
Original entry on oeis.org
1, 0, -1, 0, 1, -4, 12, 64, -172, -1348, 3456, 34240, -87084, 370640, -872336, -22639616, 52307088, -181323568, 399580288, 23627011200, -51305628400, -686160247552, 1545932859328, 68098264912128, -155370174372864, 6326621032802304, -13829529077133312, -1087288396552040448
Offset: 0
a(8) = -172:
0, 1, 0, 0, 0, 0, 0, 0;
1, 0, 1, 2, 0, 0, 0, 0;
0, 1, 0, 1, 2, 3, 0, 0;
0, 2, 1, 0, 1, 2, 3, 4;
0, 0, 2, 1, 0, 1, 2, 3;
0, 0, 3, 2, 1, 0, 1, 2;
0, 0, 0, 3, 2, 1, 0, 1;
0, 0, 0, 4, 3, 2, 1, 0.
-
Join[{1},Table[Det[Table[If[Min[i,j]
-
a(n) = matdet(matrix(n, n, i, j, if ((min(i,j) < max(i,j)) && (max(i,j) <= 2*min(i,j)), abs(i-j)))); \\ Michel Marcus, Apr 20 2022
-
from sympy import Matrix
def A353452(n): return Matrix(n, n, lambda i, j: abs(i-j) if min(i,j)Chai Wah Wu, Aug 29 2023
Showing 1-10 of 18 results.
Comments