A278847
a(n) = permanent M_n where M_n is the n X n matrix m(i,j) = i^2 + j^2.
Original entry on oeis.org
1, 2, 41, 3176, 620964, 246796680, 174252885732, 199381727959680, 345875291854507584, 864860593764292790400, 2996169331694350840741440, 13929521390709644084719495680, 84659009841182126038701730464000, 658043094413184868424932006273344000
Offset: 0
-
with(LinearAlgebra):
a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> i^2+j^2))):
seq(a(n), n=0..16); # after Alois P. Heinz
-
Flatten[{1, Table[Permanent[Table[i^2+j^2, {i, 1, n}, {j, 1, n}]], {n, 1, 15}]}]
-
a(n)={matpermanent(matrix(n, n, i, j, i^2 + j^2))} \\ Andrew Howroyd, Aug 21 2018
A346949
Value of the permanent of the matrix [1-zeta^{j-k}]_{1<=j,k<=2n}, where zeta is any primitive 2n-th root of unity.
Original entry on oeis.org
4, 48, 1440, 80640, 7257600, 958003200, 174356582400, 41845579776000, 12804747411456000, 4865804016353280000, 2248001455555215360000, 1240896803466478878720000, 806582922253211271168000000, 609776689223427721003008000000, 530505719624382117272616960000000, 526261673867387060334436024320000000
Offset: 1
a(1) is the permanent of the matrix [1-(-1)^{1-1},1-(-1)^{1-2};1-(-1)^{2-1},1-(-1)^{2-2}] = [0,2;2,0], which equals 4.
-
a[n_]:=a[n]= Permanent[Table[1-E^(2*Pi*I*(j-k)/(2*n)),{j,1,2n},{k,1,2n}]];
(* Though a(n) is actually an integer, Mathematica could not find its exact value for a general positive integer n. Instead, we may check approximate values of a(n) such as N[a[5],10] = 7257600.000. *)
-
default(realprecision, 100); a(n) = round(real(matpermanent(matrix(2*n, 2*n, j, k, 1-exp(Pi*I*(j-k)/n))))) \\ Michel Marcus, Aug 08 2021
A347061
Determinant of the (2n+1) X (2n+1) matrix with the (j,k)-entry (tan(Pi*(j-k)/(2n+1)))^2 (j,k = 0..2n).
Original entry on oeis.org
0, 54, 112500, 1111783050, 34170487129800, 2547904546473882750, 392729761077721859691900, 111952195111563752746582031250, 54383838324760862570403373592970000, 42287009764195722177648795731701042023750, 50090854432555768390858694036859976340444362500
Offset: 0
A346162
a(n) = (-1)^n*permanent[tan(Pi*(j+k)/(2n+1))]_{1<=j,k<=2n}.
Original entry on oeis.org
3, 65, 1995, 149121, 13399155, 2141638785, 387394882875, 107278565018625, 32598647029023075, 13887464253877202625, 6371929420307657080875, 3868428575833744110890625, 2498109253610200166983921875, 2048940276336573213783855290625, 1771722889715428355094671454046875, 1887395844638188493284600904244890625
Offset: 1
a(1) = 3 since the permanent of the matrix [tan(Pi*(1+1)/3),tan(Pi*(1+2)/3); tan(Pi*(2+1)/3),tan(Pi*(2+2)/3)] = [-sqrt(3),0; 0,sqrt(3)] is -3.
-
a[n_]:=a[n]=(-1)^n*Permanent[Table[Tan[Pi*(j+k)/(2n+1)],{j,1,2n},{k,1,2n}]]
(* Actually Mathematica could not yield the exact value of a(n) for a general n > 0. Instead, we find an approximate value of a(n) via Mathematica, such as N[a[3],10] = 1995.000000. *)
-
a(n) = (-1)^n*round(matpermanent(matrix(2*n, 2*n, j, k, tan(Pi*(j+k)/(2*n+1))))); \\ Michel Marcus, Aug 22 2021
Showing 1-4 of 4 results.
Comments