A204272 a(n) = sigma_2(n)*Pell(n), where sigma_2(n) = A001157(n), the sum of squares of divisors of n.
1, 10, 50, 252, 754, 3500, 8450, 34680, 89635, 309140, 700402, 2910600, 5688370, 20195500, 50706500, 160553712, 329639810, 1248615550, 2398289458, 8732957688, 19306982500, 56865638380, 119281100930, 461838762000, 853941516771
Offset: 1
Keywords
Examples
G.f.: A(x) = x + 10*x^2 + 50*x^3 + 252*x^4 + 754*x^5 + 3500*x^6 +... where A(x) = x/(1-2*x-x^2) + 2^2*2*x^2/(1-6*x^2+x^4) + 3^2*5*x^3/(1-14*x^3-x^6) + 4^2*12*x^4/(1-34*x^4+x^8) + 5^2*29*x^5/(1-82*x^5-x^10) + 6^2*70*x^6/(1-198*x^6+x^12) +...+ n^2*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) +...
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
With[{nn=30},Times@@@Thread[{Rest[LinearRecurrence[{2,1},{0,1},nn+1]], DivisorSigma[ 2,Range[nn]]}]] (* Harvey P. Dale, Oct 21 2015 *)
-
PARI
/* Subroutines used in PARI programs below: */ {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)} {A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}
-
PARI
{a(n)=sigma(n,2)*Pell(n)}
-
PARI
{a(n)=polcoeff(sum(m=1,n,m^2*Pell(m)*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}
Comments