cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A204270 a(n) = tau(n)*Pell(n), where tau(n) = A000005(n), the number of divisors of n.

Original entry on oeis.org

1, 4, 10, 36, 58, 280, 338, 1632, 2955, 9512, 11482, 83160, 66922, 323128, 780100, 2354160, 2273378, 16465260, 13250218, 95966568, 154455860, 372889432, 450117362, 4346717760, 3935214363, 12667263848, 30581480180, 110745336312, 89120964298
Offset: 1

Views

Author

Paul D. Hanna, Jan 14 2012

Keywords

Comments

Compare g.f. to the Lambert series identity: Sum_{n>=1} x^n/(1-x^n) = Sum_{n>=1} tau(n)*x^n.
Related identities:
(1) Sum_{n>=1} n^k*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} sigma_{k}(n)*Pell(n)*x^n for k>=0.
(2) Sum_{n>=1} phi(n)*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} n*Pell(n)*x^n.
(3) Sum_{n>=1} moebius(n)*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) = x.
(4) Sum_{n>=1} lambda(n)*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} Pell(n^2)*x^(n^2).

Examples

			G.f.: A(x) = 1 + 4*x + 10*x^2 + 36*x^3 + 58*x^4 + 280*x^5 + 338*x^6 +...
where A(x) = x/(1-2*x-x^2) + 2*x^2/(1-6*x^2+x^4) + 5*x^3/(1-14*x^3-x^6) + 12*x^4/(1-34*x^4+x^8) + 29*x^5/(1-82*x^5-x^10) + 70*x^6/(1-198*x^6+x^12) +...+ Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) +...
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0, n] Fibonacci[n, 2], {n, 1, 50}] (* G. C. Greubel, Jan 05 2018 *)
  • PARI
    /* Subroutines used in PARI programs below: */
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)}
    {A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}
    
  • PARI
    {a(n)=sigma(n,0)*Pell(n)}
    
  • PARI
    {a(n)=polcoeff(sum(m=1,n,Pell(m)*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}

Formula

G.f.: Sum_{n>=1} Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} tau(n)*Pell(n)*x^n, where Pell(n) = A000129(n) and A002203 is the companion Pell numbers.

A204274 G.f.: Sum_{n>=1} Pell(n^2)*x^(n^2).

Original entry on oeis.org

1, 0, 0, 12, 0, 0, 0, 0, 985, 0, 0, 0, 0, 0, 0, 470832, 0, 0, 0, 0, 0, 0, 0, 0, 1311738121, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21300003689580, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2015874949414289041, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Paul D. Hanna, Jan 14 2012

Keywords

Comments

Compare g.f. to the Lambert series identity: Sum_{n>=1} lambda(n)*x^n/(1-x^n) = Sum_{n>=1} x^(n^2); Liouville's function lambda(n) = (-1)^k, where k is number of primes dividing n (counted with multiplicity).

Examples

			G.f.: A(x) = x + 12*x^4 + 985*x^9 + 470832*x^16 + 1311738121*x^25 +...
where A(x) = x/(1-2*x-x^2) + (-1)*2*x^2/(1-6*x^2+x^4) + (-1)*5*x^3/(1-14*x^3-x^6) + (+1)*12*x^4/(1-34*x^4+x^8) + (-1)*29*x^5/(1-82*x^5-x^10) + (+1)*70*x^6/(1-198*x^6+x^12) +...+ lambda(n)*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) +...
		

Crossrefs

Programs

  • Maple
    pell:= gfun:-rectoproc({a(0)=0,a(1)=1,a(n)=2*a(n-1)+a(n-2)},a(n),remember):
    seq(`if`(issqr(n),pell(n),0), n=1..100); # Robert Israel, Nov 24 2015
  • Mathematica
    CoefficientList[Sum[Fibonacci[n^2, 2] x^n^2/x, {n, 1, 8}], x] (* Jean-François Alcover, Mar 25 2019 *)
  • PARI
    /* Subroutines used in PARI programs below: */
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)}
    {A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}
    
  • PARI
    {a(n)=issquare(n)*Pell(n)}
    
  • PARI
    {lambda(n)=local(F=factor(n));(-1)^sum(i=1,matsize(F)[1],F[i,2])}
    {a(n)=polcoeff(sum(m=1,n,lambda(m)*Pell(m)*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}

Formula

G.f.: Sum_{n>=1} lambda(n)*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)), where lambda(n) = A008836(n), Pell(n) = A000129(n) and A002203 is the companion Pell numbers.

A204271 a(n) = sigma(n)*Pell(n), where sigma(n) = A000203(n), the sum of divisors of n.

Original entry on oeis.org

1, 6, 20, 84, 174, 840, 1352, 6120, 12805, 42804, 68892, 388080, 468454, 1938768, 4680600, 14595792, 20460402, 107024190, 132502180, 671765976, 1235646880, 3356004888, 5401408344, 32600383200, 40663881751, 133006270404, 305814801800
Offset: 1

Views

Author

Paul D. Hanna, Jan 14 2012

Keywords

Comments

Compare g.f. to the Lambert series identity: Sum_{n>=1} n*x^n/(1-x^n) = Sum_{n>=1} sigma(n)*x^n.

Examples

			G.f.: A(x) = x + 6*x^2 + 20*x^3 + 84*x^4 + 174*x^5 + 840*x^6 + 1352*x^7 +...
where A(x) = x/(1-2*x-x^2) + 2*2*x^2/(1-6*x^2+x^4) + 3*5*x^3/(1-14*x^3-x^6) + 4*12*x^4/(1-34*x^4+x^8) + 5*29*x^5/(1-82*x^5-x^10) + 6*70*x^6/(1-198*x^6+x^12) +...+ n*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) +...
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[1, n] Fibonacci[n, 2], {n, 1, 50}] (* G. C. Greubel, Jan 05 2018 *)
  • PARI
    /* Subroutines used in PARI programs below: */
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)}
    {A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}
    
  • PARI
    {a(n)=sigma(n)*Pell(n)}
    
  • PARI
    {a(n)=polcoeff(sum(m=1,n,m*Pell(m)*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}

Formula

G.f.: Sum_{n>=1} n*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} sigma(n)*Pell(n)*x^n, where Pell(n) = A000129(n) and A002203 is the companion Pell numbers.

A204273 a(n) = sigma_3(n)*Pell(n), where sigma_3(n) = A001158(n), the sum of cubes of divisors of n.

Original entry on oeis.org

1, 18, 140, 876, 3654, 17640, 58136, 238680, 745645, 2696652, 7647012, 28329840, 73547278, 250101072, 688048200, 2203964592, 5585689746, 18696302730, 45448247740, 147116748744, 371929710880, 1117549627704, 2738514030408, 8899904613600
Offset: 1

Views

Author

Paul D. Hanna, Jan 14 2012

Keywords

Comments

Compare g.f. to the Lambert series identity: Sum_{n>=1} n^3*x^n/(1-x^n) = Sum_{n>=1} sigma_3(n)*x^n.

Examples

			G.f.: A(x) = x + 18*x^2 + 140*x^3 + 876*x^4 + 3654*x^5 + 17640*x^6 + ...
where A(x) = x/(1-2*x-x^2) + 2^3*2*x^2/(1-6*x^2+x^4) + 3^3*5*x^3/(1-14*x^3-x^6) + 4^3*12*x^4/(1-34*x^4+x^8) + 5^3*29*x^5/(1-82*x^5-x^10) + 6^3*70*x^6/(1-198*x^6+x^12) + ... + n^3*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) + ...
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[3, n] Fibonacci[n, 2], {n, 1, 50}] (* G. C. Greubel, Jan 05 2018 *)
  • PARI
    /* Subroutines used in PARI programs below: */
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)}
    {A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}
    
  • PARI
    {a(n)=sigma(n,3)*Pell(n)}
    
  • PARI
    {a(n)=polcoeff(sum(m=1,n,m^3*Pell(m)*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}

Formula

G.f.: Sum_{n>=1} n^3*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} sigma_3(n)*Pell(n)*x^n, where Pell(n) = A000129(n) and A002203 is the companion Pell numbers.
Showing 1-4 of 4 results.