cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A204274 G.f.: Sum_{n>=1} Pell(n^2)*x^(n^2).

Original entry on oeis.org

1, 0, 0, 12, 0, 0, 0, 0, 985, 0, 0, 0, 0, 0, 0, 470832, 0, 0, 0, 0, 0, 0, 0, 0, 1311738121, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21300003689580, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2015874949414289041, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Paul D. Hanna, Jan 14 2012

Keywords

Comments

Compare g.f. to the Lambert series identity: Sum_{n>=1} lambda(n)*x^n/(1-x^n) = Sum_{n>=1} x^(n^2); Liouville's function lambda(n) = (-1)^k, where k is number of primes dividing n (counted with multiplicity).

Examples

			G.f.: A(x) = x + 12*x^4 + 985*x^9 + 470832*x^16 + 1311738121*x^25 +...
where A(x) = x/(1-2*x-x^2) + (-1)*2*x^2/(1-6*x^2+x^4) + (-1)*5*x^3/(1-14*x^3-x^6) + (+1)*12*x^4/(1-34*x^4+x^8) + (-1)*29*x^5/(1-82*x^5-x^10) + (+1)*70*x^6/(1-198*x^6+x^12) +...+ lambda(n)*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) +...
		

Crossrefs

Programs

  • Maple
    pell:= gfun:-rectoproc({a(0)=0,a(1)=1,a(n)=2*a(n-1)+a(n-2)},a(n),remember):
    seq(`if`(issqr(n),pell(n),0), n=1..100); # Robert Israel, Nov 24 2015
  • Mathematica
    CoefficientList[Sum[Fibonacci[n^2, 2] x^n^2/x, {n, 1, 8}], x] (* Jean-François Alcover, Mar 25 2019 *)
  • PARI
    /* Subroutines used in PARI programs below: */
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)}
    {A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}
    
  • PARI
    {a(n)=issquare(n)*Pell(n)}
    
  • PARI
    {lambda(n)=local(F=factor(n));(-1)^sum(i=1,matsize(F)[1],F[i,2])}
    {a(n)=polcoeff(sum(m=1,n,lambda(m)*Pell(m)*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}

Formula

G.f.: Sum_{n>=1} lambda(n)*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)), where lambda(n) = A008836(n), Pell(n) = A000129(n) and A002203 is the companion Pell numbers.

A209446 a(n) = Pell(n)*A004016(n) for n >= 1, with a(0)=1, where A004016(n) is the number of integer solutions (x,y) to x^2 + x*y + y^2 = n.

Original entry on oeis.org

1, 6, 0, 30, 72, 0, 0, 2028, 0, 5910, 0, 0, 83160, 401532, 0, 0, 2824992, 0, 0, 79501308, 0, 463367580, 0, 0, 0, 7870428726, 0, 45872220270, 221490672624, 0, 0, 3116610274188, 0, 0, 0, 0, 127800022137480, 617073093431772, 0, 3596565555708780, 0, 0, 0, 122177355889216668
Offset: 0

Views

Author

Paul D. Hanna, Mar 10 2012

Keywords

Comments

Compare g.f. to the Lambert series of A004016: 1 + 6*Sum_{n>=1} Kronecker(n,3)*x^n/(1 - x^n).

Examples

			G.f.: A(x) = 1 + 6*x + 30*x^3 + 72*x^4 + 2028*x^7 + 5910*x^9 + 83160*x^12 + ...
where A(x) = 1 + 1*6*x + 5*6*x^3 + 12*6*x^4 + 169*12*x^7 + 985*6*x^9 + 13860*6*x^12 + ... + Pell(n)*A004016(n)*x^n + ...
The g.f. is also given by the identity:
A(x) = 1 + 6*( 1*x/(1-2*x-x^2) - 2*x^2/(1-6*x^2+x^4) + 12*x^4/(1-34*x^4+x^8) - 29*x^5/(1-82*x^5-x^10) + 169*x^7/(1-478*x^7-x^14) + ...).
The values of the symbol Kronecker(n,3) repeat [1, -1, 0, ...].
		

Crossrefs

Programs

  • Mathematica
    A004016[n_]:= If[n < 1, Boole[n == 0], 6 DivisorSum[n, KroneckerSymbol[#, 3] &]]; Join[{1}, Table[Fibonacci[n, 2]*A004016[n], {n, 1, 50}]] (* G. C. Greubel, Jan 02 2018 *)
  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
    {A002203(n)=Pell(n-1)+Pell(n+1)}
    {a(n)=polcoeff(1 + 6*sum(m=1,n,kronecker(m,3)*Pell(m)*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m) +x*O(x^n))),n)}
    for(n=0,60,print1(a(n),", "))

Formula

G.f.: 1 + 6*Sum_{n>=1} Pell(n)*Kronecker(n,3)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)), where A002203(n) = Pell(n-1) + Pell(n+1).

A204271 a(n) = sigma(n)*Pell(n), where sigma(n) = A000203(n), the sum of divisors of n.

Original entry on oeis.org

1, 6, 20, 84, 174, 840, 1352, 6120, 12805, 42804, 68892, 388080, 468454, 1938768, 4680600, 14595792, 20460402, 107024190, 132502180, 671765976, 1235646880, 3356004888, 5401408344, 32600383200, 40663881751, 133006270404, 305814801800
Offset: 1

Views

Author

Paul D. Hanna, Jan 14 2012

Keywords

Comments

Compare g.f. to the Lambert series identity: Sum_{n>=1} n*x^n/(1-x^n) = Sum_{n>=1} sigma(n)*x^n.

Examples

			G.f.: A(x) = x + 6*x^2 + 20*x^3 + 84*x^4 + 174*x^5 + 840*x^6 + 1352*x^7 +...
where A(x) = x/(1-2*x-x^2) + 2*2*x^2/(1-6*x^2+x^4) + 3*5*x^3/(1-14*x^3-x^6) + 4*12*x^4/(1-34*x^4+x^8) + 5*29*x^5/(1-82*x^5-x^10) + 6*70*x^6/(1-198*x^6+x^12) +...+ n*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) +...
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[1, n] Fibonacci[n, 2], {n, 1, 50}] (* G. C. Greubel, Jan 05 2018 *)
  • PARI
    /* Subroutines used in PARI programs below: */
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)}
    {A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}
    
  • PARI
    {a(n)=sigma(n)*Pell(n)}
    
  • PARI
    {a(n)=polcoeff(sum(m=1,n,m*Pell(m)*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}

Formula

G.f.: Sum_{n>=1} n*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} sigma(n)*Pell(n)*x^n, where Pell(n) = A000129(n) and A002203 is the companion Pell numbers.

A204272 a(n) = sigma_2(n)*Pell(n), where sigma_2(n) = A001157(n), the sum of squares of divisors of n.

Original entry on oeis.org

1, 10, 50, 252, 754, 3500, 8450, 34680, 89635, 309140, 700402, 2910600, 5688370, 20195500, 50706500, 160553712, 329639810, 1248615550, 2398289458, 8732957688, 19306982500, 56865638380, 119281100930, 461838762000, 853941516771
Offset: 1

Views

Author

Paul D. Hanna, Jan 14 2012

Keywords

Comments

Compare g.f. to the Lambert series identity: Sum_{n>=1} n^2*x^n/(1-x^n) = Sum_{n>=1} sigma_2(n)*x^n.

Examples

			G.f.: A(x) = x + 10*x^2 + 50*x^3 + 252*x^4 + 754*x^5 + 3500*x^6 +...
where A(x) = x/(1-2*x-x^2) + 2^2*2*x^2/(1-6*x^2+x^4) + 3^2*5*x^3/(1-14*x^3-x^6) + 4^2*12*x^4/(1-34*x^4+x^8) + 5^2*29*x^5/(1-82*x^5-x^10) + 6^2*70*x^6/(1-198*x^6+x^12) +...+ n^2*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) +...
		

Crossrefs

Programs

  • Mathematica
    With[{nn=30},Times@@@Thread[{Rest[LinearRecurrence[{2,1},{0,1},nn+1]], DivisorSigma[ 2,Range[nn]]}]] (* Harvey P. Dale, Oct 21 2015 *)
  • PARI
    /* Subroutines used in PARI programs below: */
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)}
    {A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}
    
  • PARI
    {a(n)=sigma(n,2)*Pell(n)}
    
  • PARI
    {a(n)=polcoeff(sum(m=1,n,m^2*Pell(m)*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}

Formula

G.f.: Sum_{n>=1} n^2*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} sigma_2(n)*Pell(n)*x^n, where Pell(n) = A000129(n) and A002203 is the companion Pell numbers.

A204273 a(n) = sigma_3(n)*Pell(n), where sigma_3(n) = A001158(n), the sum of cubes of divisors of n.

Original entry on oeis.org

1, 18, 140, 876, 3654, 17640, 58136, 238680, 745645, 2696652, 7647012, 28329840, 73547278, 250101072, 688048200, 2203964592, 5585689746, 18696302730, 45448247740, 147116748744, 371929710880, 1117549627704, 2738514030408, 8899904613600
Offset: 1

Views

Author

Paul D. Hanna, Jan 14 2012

Keywords

Comments

Compare g.f. to the Lambert series identity: Sum_{n>=1} n^3*x^n/(1-x^n) = Sum_{n>=1} sigma_3(n)*x^n.

Examples

			G.f.: A(x) = x + 18*x^2 + 140*x^3 + 876*x^4 + 3654*x^5 + 17640*x^6 + ...
where A(x) = x/(1-2*x-x^2) + 2^3*2*x^2/(1-6*x^2+x^4) + 3^3*5*x^3/(1-14*x^3-x^6) + 4^3*12*x^4/(1-34*x^4+x^8) + 5^3*29*x^5/(1-82*x^5-x^10) + 6^3*70*x^6/(1-198*x^6+x^12) + ... + n^3*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) + ...
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[3, n] Fibonacci[n, 2], {n, 1, 50}] (* G. C. Greubel, Jan 05 2018 *)
  • PARI
    /* Subroutines used in PARI programs below: */
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)}
    {A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}
    
  • PARI
    {a(n)=sigma(n,3)*Pell(n)}
    
  • PARI
    {a(n)=polcoeff(sum(m=1,n,m^3*Pell(m)*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}

Formula

G.f.: Sum_{n>=1} n^3*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} sigma_3(n)*Pell(n)*x^n, where Pell(n) = A000129(n) and A002203 is the companion Pell numbers.

A204275 G.f.: Product_{n>=1} (1 + A002203(n)*x^n + (-1)^n*x^(2*n)) where A002203 is the companion Pell numbers.

Original entry on oeis.org

1, 2, 5, 26, 57, 222, 698, 2096, 6038, 19730, 58915, 169952, 516024, 1484958, 4397513, 13029558, 37094682, 106442928, 311875984, 879620854, 2522107990, 7229956352, 20398904648, 57543374566, 163053304047, 457604617760, 1283583473614, 3606627675050
Offset: 0

Views

Author

Paul D. Hanna, Jan 13 2012

Keywords

Comments

Analog to Euler's identity: Product_{n>=1} (1+x^n) = Product_{n>=1} 1/(1-x^(2*n-1)), which is the g.f. for the number of partitions of distinct parts.

Examples

			G.f.: A(x) = 1 + 2*x + 5*x^2 + 26*x^3 + 57*x^4 + 222*x^5 + 698*x^6 +...
where A(x) = (1+2*x-x^2) * (1+6*x^2+x^4) * (1+14*x^3-x^6) * (1+34*x^4+x^8) * (1+82*x^5-x^10) * (1+198*x^6+x^12) *...* (1 + A002203(n)*x^n + (-1)^n*x^(2*n)) *...
and 1/A(x) = (1-2*x-x^2) * (1-14*x^3-x^6) * (1-82*x^5-x^10) * (1-478*x^7-x^14) * (1-2786*x^9-x^18) * (1-16238*x^11-x^22) *...* (1 - A002203(2*n-1)*x^(2*n-1) + (-1)^n*x^(4*n-2)) *...
Also, the logarithm of the g.f. equals the series:
log(A(x)) = 1*2*x + 1*6*x^2/2 + 4*14*x^3/3 + 1*34*x^4/4 + 6*82*x^5/5 + 4*198*x^6/6 + 8*478*x^7/7 + 1*1154*x^8/8 +...+ A000593(n)*A002203(n)*x^n/n +...
The companion Pell numbers (starting at offset 1) begin:
A002203 = [2,6,14,34,82,198,478,1154,2786,6726,16238,...]
and form the logarithm of a g.f. for Pell numbers:
log(1/(1-2*x-x^2)) = 2*x + 6*x^2/2 + 14*x^3/3 + 34*x^4/4 + 82*x^5/5 +...
		

Crossrefs

Cf. A203801, A204270, A000129 (Pell), A002203 (companion Pell), A000593.

Programs

  • PARI
    /* Subroutine used in PARI programs below: */
    {A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}
    
  • PARI
    {a(n)=polcoeff(prod(k=1,n,1+A002203(k)*x^k+(-1)^k*x^(2*k) +x*O(x^n)),n)}
    
  • PARI
    {a(n)=polcoeff(1/prod(k=1,n,1-A002203(2*k-1)*x^(2*k-1)-x^(4*k-2) +x*O(x^n)),n)}
    
  • PARI
    /* Exponential form using sum of odd divisors of n: */
    {A000593(n)=if(n<1, 0, sumdiv(n, d, (-1)^(d+1)*n/d))}
    {a(n)=polcoeff(exp(sum(k=1, n, A000593(k)*A002203(k)*x^k/k)+x*O(x^n)), n)}

Formula

G.f.: Product_{n>=1} 1/(1 - A002203(2*n-1)*x^(2*n-1) + (-1)^n*x^(4*n-2)).
G.f.: exp( Sum_{n>=1} A000593(n) * A002203(n) * x^n/n ) where A000593(n) = sum of odd divisors of n.
a(n) = (1/n)*Sum_{k=1..n} A000593(k) * A002203(k)*a(n-k) for n>0, with a(0) = 1.

A209447 a(n) = Pell(n)*A008653(n) for n>=1, with a(0)=1, where A008653 is the theta series of direct sum of 2 copies of hexagonal lattice.

Original entry on oeis.org

1, 12, 72, 60, 1008, 2088, 2520, 16224, 73440, 11820, 513648, 826704, 1164240, 5621448, 23265216, 14041800, 175149504, 245524824, 98791560, 1590026160, 8061191712, 3706940640, 40272058656, 64816900128, 97801149600, 487966581012, 1596075244848, 91744440540
Offset: 0

Views

Author

Paul D. Hanna, Mar 10 2012

Keywords

Comments

Compare g.f. to the Lambert series of A008653: 1 + 12*Sum_{n>=1} Chi(n,3)*n*x^n/(1-x^n).
Here Chi(n,3) = principal Dirichlet character of n modulo 3.

Examples

			G.f.: A(x) = 1 + 12*x + 72*x^2 + 60*x^3 + 1008*x^4 + 2088*x^5 + 2520*x^6 +...
where A(x) = 1 + 1*12*x + 2*36*x^2 + 5*12*x^3 + 12*84*x^4 + 29*72*x^5 + 70*36*x^6 +...+ Pell(n)*A008653(n)*x^n +...
The g.f. is also given by the identity:
A(x) = 1 + 12*( 1*1*x/(1-2*x-x^2) + 2*2*x^2/(1-6*x^2+x^4) + 12*4*x^4/(1-34*x^4+x^8) + 29*5*x^5/(1-82*x^5-x^10) + 169*7*x^7/(1-478*x^7-x^14) + 408*8*x^8/(1-1154*x^8-x^16)  +...).
The values of the Dirichlet character Chi(n,3) repeat [1,1,0, ...].
		

Crossrefs

Programs

  • Mathematica
    A008653[n_]:= If[n < 1, Boole[n == 0], 12*Sum[If[Mod[d, 3] > 0, d, 0], {d, Divisors@n}]]; Join[{1}, Table[Fibonacci[n, 2]*A008653[n], {n, 1, 1000}]] (* G. C. Greubel, Jan 02 2017 *)
  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
    {A002203(n)=Pell(n-1)+Pell(n+1)}
    {a(n)=polcoeff(1 + 12*sum(m=1,n,Pell(m)*kronecker(m,3)^2*m*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m) +x*O(x^n))),n)}
    for(n=0,50,print1(a(n),", "))

Formula

G.f.: 1 + 12*Sum_{n>=1} Pell(n)*Chi(n,3)*n*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)), where A002203(n) = Pell(n-1) + Pell(n+1).

A209449 a(n) = Pell(n)*A113973(n) for n>=1, with a(0)=1, where A113973 lists the coefficients in phi(x^3)^3/phi(x) and phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 8, -10, 24, 0, 280, -676, 1632, -1970, 0, 0, 27720, -133844, 646256, 0, 941664, 0, 10976840, -26500436, 0, -154455860, 0, 0, 2173358880, -2623476242, 25334527696, -15290740090, 73830224208, 0, 0, -1038870091396, 2508054264192, 0, 0, 0, 42600007379160
Offset: 0

Views

Author

Paul D. Hanna, Mar 10 2012

Keywords

Comments

Compare g.f. to the Lambert series of A113973:
1 - 2*Sum_{n>=1} Kronecker(n,3)*x^n/(1 - (-x)^n).

Examples

			G.f.: A(x) = 1 - 2*x + 8*x^2 - 10*x^3 + 24*x^4 + 280*x^6 - 676*x^7 +...
where A(x) = 1 - 1*2*x + 2*4*x^2 - 5*2*x^3 + 12*2*x^4 + 70*4*x^6 - 169*4*x^7 + 408*4*x^8 +...+ Pell(n)*A113973(n)*x^n +...
The g.f. is also given by the identity:
A(x) = 1 - 2*( 1*x/(1+2*x-x^2) - 2*x^2/(1-6*x^2+x^4) + 12*x^4/(1-34*x^4+x^8) - 29*x^5/(1+82*x^5-x^10) + 169*x^7/(1+478*x^7-x^14) - 408*x^8/(1-1154*x^8+x^16) +...).
The values of the symbol Kronecker(n,3) repeat [1,-1,0, ...].
		

Crossrefs

Programs

  • Mathematica
    A113973:= CoefficientList[Series[EllipticTheta[3, 0, q^3]^3 /EllipticTheta[3, 0, q], {q, 0, 60}], q]; Table[If[n == 0, 1, Fibonacci[n, 2]*A113973[[n + 1]]], {n, 0, 50}] (* G. C. Greubel, Dec 03 2017 *)
  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
    {A002203(n)=Pell(n-1)+Pell(n+1)}
    {a(n)=polcoeff(1 - 2*sum(m=1,n,Pell(m)*kronecker(m,3)*x^m/(1-A002203(m)*(-x)^m+(-1)^m*x^(2*m) +x*O(x^n))),n)}
    for(n=0,60,print1(a(n),", "))

Formula

G.f.: 1 - 2*Sum_{n>=1} Pell(n)*Kronecker(n,3)*x^n/(1 - A002203(n)*(-x)^n + (-1)^n*x^(2*n)), where A002203(n) = Pell(n-1) + Pell(n+1).

A209444 a(n) = Pell(n)*A000143(n) for n>=1 with a(0)=1, where A000143(n) is the number of ways of writing n as a sum of 8 squares.

Original entry on oeis.org

1, 16, 224, 2240, 13632, 58464, 219520, 930176, 3805824, 11930320, 33558336, 122352192, 440858880, 1176756448, 3112368896, 11008771200, 35248366848, 89371035936, 232665100640, 727171963840, 2289378446208, 5950875374080, 13907284255872, 43816224486528
Offset: 0

Views

Author

Paul D. Hanna, Mar 09 2012

Keywords

Comments

Compare g.f. to the Lambert series of A000143: 1 + 16*Sum_{n>=1} n^3*x^n/(1 - (-x)^n).

Examples

			G.f.: A(x) = 1 + 16*x + 112*x^2 + 896*x^3 + 3408*x^4 + 10080*x^5 +...
where A(x) = 1 + 1*16*x + 2*112*x^2 + 5*448*x^3 + 12*1136*x^4 + 29*2016*x^5 + 70*3136*x^6 + 169*5504*x^7 + 408*9328*x^8 +...+ Pell(n)*A000143(n)*x^n +...
The g.f. is also given by the identity:
A(x) = 1 + 16*( 1*1*x/(1+2*x-x^2) + 2*8*x^2/(1-6*x^2+x^4) + 5*27*x^3/(1+14*x^3-x^6) + 12*64*x^4/(1-34*x^4+x^8) + 29*125*x^5/(1+82*x^5-x^10) + 70*216*x^6/(1-198*x^6+x^12) + 169*343*x^7/(1+478*x^7-x^14) +...).
		

Crossrefs

Programs

  • Mathematica
    A000143:= Table[SquaresR[8, n], {n, 0, 200}]; Join[{1}, Table[Fibonacci[n, 2]*A000143[[n + 1]], {n, 1, 50}]] (* G. C. Greubel, Jan 02 2018 *)
  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
    {A002203(n)=Pell(n-1)+Pell(n+1)}
    {a(n)=polcoeff(1+16*sum(m=1,n,Pell(m)*m^3*x^m/(1-A002203(m)*(-x)^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}
    for(n=0,31,print1(a(n),", "))

Formula

G.f.: 1 + 16*Sum_{n>=1} Pell(n)*n^3*x^n/(1 - A002203(n)*(-x)^n + (-1)^n*x^(2*n)), where A002203(n) = Pell(n-1) + Pell(n+1).

A209448 a(n) = Pell(n)*A008655(n) for n>=1, with a(0)=1, where A008655 lists the coefficients in (theta_3(x)*theta_3(3*x)+theta_2(x)*theta_2(3*x))^4.

Original entry on oeis.org

1, 24, 432, 4440, 21024, 87696, 559440, 1395264, 5728320, 23852760, 64719648, 183528288, 898460640, 1765134672, 6002425728, 21820957200, 52895150208, 134056553904, 598084104240, 1090757945760, 3530801969856, 11795485116480, 26821191064896, 65724336729792
Offset: 0

Views

Author

Paul D. Hanna, Mar 10 2012

Keywords

Comments

Compare g.f. to the Lambert series of A008655:
1 + Sum_{n>=1} 24*n^3*x^n/(1-x^n) + 8*(3*n)^3*x^(3*n)/(1-x^(3*n)).

Examples

			G.f.: A(x) = 1 + 24*x + 432*x^2 + 4440*x^3 + 21024*x^4 + 87696*x^5 +...
where A(x) = 1 + 1*24*x + 2*216*x^2 + 5*888*x^3 + 12*1752*x^4 + 29*3024*x^5 +...+ Pell(n)*A008655(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    A008655[n_]:= SeriesCoefficient[((EllipticTheta[3, 0, q]^3 + EllipticTheta[3, Pi/3, q]^3 + EllipticTheta[3, 2 Pi/3, q]^3)^4/(3* EllipticTheta[3, 0, q^3])^4), {q, 0, n}]; b:= Table[A008655[n], {n, 0, 102}][[1 ;; ;; 2]]; Join[{1}, Table[Fibonacci[n, 2]*b[[n + 1]], {n, 1, 50}]] (* G. C. Greubel, Jan 26 2018 *)
  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
    {A002203(n)=Pell(n-1)+Pell(n+1)}
    {a(n)=polcoeff(1 + sum(m=1,n, 24*Pell(m)*m^3*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m) +x*O(x^n)) + 8*Pell(3*m)*(3*m)^3*x^(3*m)/(1-A002203(3*m)*x^(3*m)+(-1)^m*x^(6*m) +x*O(x^n))  ),n)}
    for(n=0,40,print1(a(n),", "))

Formula

G.f.: 1 + Sum_{n>=1} 24*Pell(n)*n^3*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) + 8*Pell(3*n)*(3*n)^3*x^(3*n)/(1 - A002203(3*n)*x^(3*n) + (-1)^n*x^(6*n)), where A002203(n) = Pell(n-1) + Pell(n+1).
Showing 1-10 of 22 results. Next