A204270 a(n) = tau(n)*Pell(n), where tau(n) = A000005(n), the number of divisors of n.
1, 4, 10, 36, 58, 280, 338, 1632, 2955, 9512, 11482, 83160, 66922, 323128, 780100, 2354160, 2273378, 16465260, 13250218, 95966568, 154455860, 372889432, 450117362, 4346717760, 3935214363, 12667263848, 30581480180, 110745336312, 89120964298
Offset: 1
Keywords
Examples
G.f.: A(x) = 1 + 4*x + 10*x^2 + 36*x^3 + 58*x^4 + 280*x^5 + 338*x^6 +... where A(x) = x/(1-2*x-x^2) + 2*x^2/(1-6*x^2+x^4) + 5*x^3/(1-14*x^3-x^6) + 12*x^4/(1-34*x^4+x^8) + 29*x^5/(1-82*x^5-x^10) + 70*x^6/(1-198*x^6+x^12) +...+ Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) +...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
Table[DivisorSigma[0, n] Fibonacci[n, 2], {n, 1, 50}] (* G. C. Greubel, Jan 05 2018 *)
-
PARI
/* Subroutines used in PARI programs below: */ {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)} {A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}
-
PARI
{a(n)=sigma(n,0)*Pell(n)}
-
PARI
{a(n)=polcoeff(sum(m=1,n,Pell(m)*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}
Comments