cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204315 Numbers j such that floor(j^(1/4)) divides j.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126
Offset: 1

Views

Author

Benoit Cloitre, Jan 14 2012

Keywords

Examples

			26 is a term as floor(26^(1/4)) = 2 divides 26. - _David A. Corneth_, Oct 04 2023
		

Crossrefs

Programs

  • Maple
    isA204315 := proc(n)
        if modp(n,floor(root[4](n))) = 0 then
            true ;
        else
            false ;
        fi ;
    end proc:
    for n from 1 to 130 do
        if isA204315(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Sep 10 2017
  • Mathematica
    Select[Range[150],Mod[#,Floor[Surd[#,4]]]==0&] (* Harvey P. Dale, Oct 04 2023 *)
  • PARI
    a(n) = {my(k = 0, t = 0); while(t < n, k++; t = 4*k^3/3 + 5*k^2 + 26*k/3); (k+1)^4 - 1 - k * (t - n)} \\ David A. Corneth, Oct 06 2023
    
  • PARI
    first(n) = {my(res = vector(n), t = 0); for(i = 1, oo, forstep(j = i^4, (i + 1)^4 - 1, i, t++; if(t > n, return(res)); res[t] = j))} \\ David A. Corneth, Oct 06 2023

Formula

Let f(x) = 4*x^3/3 + 5*x^2 + 26*x/3 and let k be the smallest integer x such that f(x) >= n. Then a(n) = (k+1)^4 - 1 - k * (f(k) - n). - David A. Corneth, Oct 06 2023