A204389 Number of partitions of n into distinct composite parts.
1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 2, 0, 2, 1, 3, 2, 3, 1, 5, 3, 5, 4, 7, 4, 9, 7, 10, 9, 13, 10, 17, 14, 18, 18, 25, 22, 30, 27, 34, 36, 44, 40, 53, 52, 62, 65, 76, 74, 93, 95, 107, 113, 131, 133, 158, 164, 182, 195, 221, 229, 264, 276, 304, 329, 367, 383, 431
Offset: 0
Keywords
Examples
a(10) = #{10, 6+4} = 2; a(11) = #{ } = 0; a(12) = #{12, 8+4} = 2; a(13) = #{9+4} = 1; a(14) = #{14, 10+4, 8+6} = 3; a(15) = #{15, 9+6} = 2; a(16) = #{16, 12+4, 10+6} = 3; a(17) = #{9+8} = 1; a(18) = #{18, 14+4, 12+6, 10+8, 8+6+4} = 5; a(19) = #{15+4, 10+9, 9+6+4} = 3; a(20) = #{20, 16+4, 14+6, 12+8, 10+6+4} = 5.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000 (terms n = 0..250 from Reinhard Zumkeller)
Programs
-
Haskell
a204389 = p a002808_list where p _ 0 = 1 p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<2, 0, b(n, i-1)+ `if`(i>n or isprime(i), 0, b(n-i, i-1)))) end: a:= n-> b(n$2): seq(a(n), n=0..70); # Alois P. Heinz, May 29 2013
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<2, 0, b[n, i-1] + If[i>n || PrimeQ[i], 0, b[n-i, i-1]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Oct 22 2015, after Alois P. Heinz *)
Formula
G.f.: (1/(1 + x))*Product_{k>=1} (1 + x^k)/(1 + x^prime(k)). - Ilya Gutkovskiy, Dec 31 2016
G.f.: product_(i>=1) (1+x^A002808(i)). - R. J. Mathar, Mar 01 2023