A204514 Numbers such that floor(a(n)^2 / 8) is again a square.
0, 1, 2, 3, 6, 17, 34, 99, 198, 577, 1154, 3363, 6726, 19601, 39202, 114243, 228486, 665857, 1331714, 3880899, 7761798, 22619537, 45239074, 131836323, 263672646, 768398401, 1536796802, 4478554083, 8957108166, 26102926097, 52205852194, 152139002499, 304278004998, 886731088897
Offset: 1
Links
- M. F. Hasler, Truncated squares, OEIS wiki, Jan 16 2012
- Index to sequences related to truncating digits of squares.
- Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1).
Crossrefs
Programs
-
Maple
A204514 := proc(n) coeftayl((x^2+2*x^3-3*x^4-6*x^5)/(1-6*x^2+x^4), x=0, n); end proc: seq(A204514(n), n=1..30); # Wesley Ivan Hurt, Sep 28 2014
-
Mathematica
CoefficientList[Series[(x^2 + 2*x^3 - 3*x^4 - 6*x^5)/(x (1 - 6*x^2 + x^4)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Sep 28 2014 *) LinearRecurrence[{0,6,0,-1},{0,1,2,3,6},40] (* Harvey P. Dale, Nov 23 2022 *)
-
PARI
b=8;for(n=0,1e7,issquare(n^2\b) & print1(n","))
-
PARI
A204514(n)=polcoeff((x + 2*x^2 - 3*x^3 - 6*x^4)/(1 - 6*x^2 + x^4+O(x^(n+!n))),n-1,x)
Formula
G.f. = (x^2 + 2*x^3 - 3*x^4 - 6*x^5)/(1 - 6*x^2 + x^4).
a(n) = sqrt(A055872(n)). - M. F. Hasler, Sep 28 2014
Comments