cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204556 Left edge of the triangle A045975.

Original entry on oeis.org

1, 2, 9, 24, 45, 90, 133, 224, 297, 450, 561, 792, 949, 1274, 1485, 1920, 2193, 2754, 3097, 3800, 4221, 5082, 5589, 6624, 7225, 8450, 9153, 10584, 11397, 13050, 13981, 15872, 16929, 19074, 20265, 22680, 24013, 26714, 28197, 31200, 32841, 36162, 37969, 41624
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 18 2012

Keywords

Programs

  • Haskell
    a204556 = head . a045975_row
    
  • Magma
    [n*(2*n^2-3*n+(-1)^n*(n-3)+3)/4: n in [1..50]]; // G. C. Greubel, Jun 15 2018
  • Mathematica
    Table[n*(2*n^2 - 3*n + (-1)^n*(n - 3) + 3)/4, {n, 1, 50}] (* G. C. Greubel, Jun 15 2018 *)
  • PARI
    Vec(x*(1+x+4*x^2+12*x^3+3*x^4+3*x^5)/((1+x)^3*(x-1)^4) + O(x^99)) \\ Charles R Greathouse IV, Jun 12 2015
    
  • PARI
    for(n=1, 50, print1(n*(2*n^2-3*n+(-1)^n*(n-3)+3)/4, ", ")) \\ G. C. Greubel, Jun 15 2018
    

Formula

a(n) = A045975(n,1);
a(n) = A031940(n-1) * n for n > 1;
a(n) = A204557(n) - A045895(n).
G.f.: x*(1+x+4*x^2+12*x^3+3*x^4+3*x^5) / ((1+x)^3*(x-1)^4). - R. J. Mathar, Aug 13 2012
From Colin Barker, Jan 28 2016: (Start)
a(n) = n*(2*n^2-3*n+(-1)^n*(n-3)+3)/4.
a(n) = (n^3-n^2)/2 for n even.
a(n) = (n^3-2*n^2+3*n)/2 for n odd.
(End)