A204694 a(n) = n^n (mod 8).
1, 1, 4, 3, 0, 5, 0, 7, 0, 1, 0, 3, 0, 5, 0, 7, 0, 1, 0, 3, 0, 5, 0, 7, 0, 1, 0, 3, 0, 5, 0, 7, 0, 1, 0, 3, 0, 5, 0, 7, 0, 1, 0, 3, 0, 5, 0, 7, 0, 1, 0, 3, 0, 5, 0, 7, 0, 1, 0, 3, 0, 5, 0, 7, 0, 1, 0, 3, 0, 5, 0, 7, 0, 1, 0, 3, 0, 5, 0, 7, 0, 1, 0, 3, 0, 5, 0
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 1).
Programs
-
Mathematica
Table[PowerMod[n,n,8], {n,0,100}] Join[{1, 1, 4},LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 1},{3, 0, 5, 0, 7, 0, 1, 0},84]] (* Ray Chandler, Aug 25 2015 *) PadRight[{1,1,4},120,{0,1,0,3,0,5,0,7}] (* Harvey P. Dale, Aug 06 2018 *)
-
PARI
a(n)=lift(Mod(n,8)^n) \\ Charles R Greathouse IV, Jan 23 2012
Formula
G.f.: (4*x^10 + x^8 - 7*x^7 - 5*x^5 - 3*x^3 - 4*x^2 - x - 1)/(x^8 - 1). - Chai Wah Wu, Jun 04 2016
a(n) = A000312(n) mod 8. - Michel Marcus, Jun 04 2016
Comments