cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204856 G.f.: Sum_{n>=0} x^(n*(n+1)/2) / Product_{k=1..n} (1 - k*x^k).

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 5, 9, 11, 22, 27, 49, 68, 115, 157, 279, 372, 628, 914, 1457, 2070, 3457, 4840, 7753, 11442, 17768, 25824, 41315, 59008, 92140, 137212, 208524, 305472, 477659, 691381, 1058019, 1575694, 2370618, 3491693, 5359888, 7796346, 11799263, 17583757
Offset: 0

Views

Author

Paul D. Hanna, Jan 20 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 2*x^4 + 4*x^5 + 5*x^6 + 9*x^7 + 11*x^8 +...
where A(x) = 1 + x/(1-x) + x^3/((1-x)*(1-2*x^2)) + x^6/((1-x)*(1-2*x^2)*(1-3*x^3)) + x^10/((1-x)*(1-2*x^2)*(1-3*x^3)*(1-4*x^4)) +...
		

Crossrefs

Column sums of A367955.

Programs

  • Mathematica
    Table[SeriesCoefficient[Sum[x^Binomial[n + 1, 2]/Product[(1 - k*x^k), {k, 1, n}], {x, 0, 100}], {x, 0, n}], {n, 0, 50}] (* G. C. Greubel, Dec 19 2017 *)
  • PARI
    {a(n)=polcoeff(1+sum(m=1,n,x^(m*(m+1)/2)/prod(k=1,m,1-k*x^k+x*O(x^n))),n)}

Formula

G.f.: 1/(1 - x/(1 - x^2*(1-x)/(1-x^2 - x^3*(1-2*x^2)/(1-2*x^3 - x^4*(1-3*x^3)/(1-3*x^4 - x^5*(1-4*x^4)/(1-4*x^5 -...)))))), a continued fraction.
From Vaclav Kotesovec, Jun 18 2019: (Start)
a(n) ~ c * 3^(n/3), where
c = 23.5612420584121380174441491950859168338330954540437... if mod(n,3)=0
c = 23.5209031427848763179214171003561794127717213180726... if mod(n,3)=1
c = 23.5214569018665529984420312927586688667133017590049... if mod(n,3)=2
(End)