cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204877 Continued fraction expansion of 3*tanh(1/3).

Original entry on oeis.org

0, 1, 27, 5, 63, 9, 99, 13, 135, 17, 171, 21, 207, 25, 243, 29, 279, 33, 315, 37, 351, 41, 387, 45, 423, 49, 459, 53, 495, 57, 531, 61, 567, 65, 603, 69, 639, 73, 675, 77, 711, 81, 747, 85, 783, 89, 819, 93, 855, 97, 891, 101, 927, 105, 963, 109, 999, 113
Offset: 0

Views

Author

Bruno Berselli, Jan 23 2012

Keywords

Comments

The continued fraction expansions of tanh(1) and 2*tanh(1/2) are in A004273 and A110185, respectively.

Crossrefs

Programs

  • Magma
    I:=[0,1,27,5,63]; [n le 5 select I[n] else 2*Self(n-2)-Self(n-4): n in [1..58]];
    
  • Mathematica
    ContinuedFraction[3 Tanh[1/3], 158]
    CoefficientList[Series[x (1 + 27 x + 3 x^2 + 9 x^3) / ((1 - x)^2 (1 + x)^2), {x, 0, 60}], x] (* Vincenzo Librandi, Jun 14 2013 *)
  • Maxima
    makelist(coeff(taylor(x*(1+27*x+3*x^2+9*x^3)/((1-x)^2*(1+x)^2), x, 0, n), x, n), n, 0, 57);
  • PARI
    \p232;
           contfrac(3*tanh(1/3))
    

Formula

G.f.: x*(1+27*x+3*x^2+9*x^3)/((1-x)^2*(1+x)^2).
E.g.f.: 9-4*exp(-x)*(1+2*x)+5*exp(x)*(-1+2*x).
a(n) = (5+4*(-1)^n)*(2*n-1), with a(0)=0.
a(n) = 2*a(n-2)-a(n-4) for n>4.
a(n) = a(n-2)+A040314(n-2) for n>2.
a(n)*a(n+1) = a(2*n^2).
Sum(a(i), i=0..n) = A195162(A042948(n)).