A204879 Numbers that can be written as sum of perfect numbers.
6, 12, 18, 24, 28, 30, 34, 36, 40, 42, 46, 48, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Perfect Number
- Wikipedia, Perfect number
Crossrefs
Cf. A000396 (perfect numbers).
Programs
-
Haskell
import Data.List (findIndices) a204879 n = a204879_list !! (n-1) a204879_list = map (+ 1) $ findIndices (> 0) a097796_list
-
PARI
/* The following code is valid up to occurrence of the first odd perfect number (if it exists), thus at least up to 10^300 */ is_A204879(n)={ n%2&return; n>50 || n%6==0 || n==28 || n==34 || n==40 || n==46 } A204879(n)={ if(n>12,n+13,3*n-if(n>4,n*3\2-6))*2 } \\ M. F. Hasler, Feb 09 2012
Formula
A204879 = { 2k; k>25 } union { 6k; k>0 } union { 28, 34, 40, 46 }
Comments