cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A097796 Number of partitions of n into perfect numbers.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 25 2004

Keywords

Comments

a(2*n) = A097795(n).
a(A204878(n)) = 0; a(A204879(n)) > 0.

Examples

			a(90)=2: 90 = 15*6 = 15*A000396(1) = 3*28 + 1*6 = 3*A000396(2) + 1*A000396(1).
		

Crossrefs

Programs

  • Haskell
    a097796 = p a000396_list where
       p _ 0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Jan 20 2012
  • Mathematica
    f[x_] := Product[-(1/(-1 + x^i)), {i, {6, 28, 496, 8128, 33550336}}]; CoefficientList[Series[f[x], {x, 0, 1000}], x] (* Ben Branman, Jan 07 2012 *)

A185351 Sums of distinct perfect numbers.

Original entry on oeis.org

0, 6, 28, 34, 496, 502, 524, 530, 8128, 8134, 8156, 8162, 8624, 8630, 8652, 8658, 33550336, 33550342, 33550364, 33550370, 33550832, 33550838, 33550860, 33550866, 33558464, 33558470, 33558492, 33558498, 33558960, 33558966, 33558988, 33558994, 8589869056
Offset: 1

Views

Author

Keywords

Comments

The first 131072 terms of this sequence are even. Conjecturally, all terms are even.
Numbers in the range of the sum of perfect divisors function (A187794). - Timothy L. Tiffin, Jul 13 2016

Examples

			502 = 496 + 6, where 496 and 6 are perfect.
		

Crossrefs

Programs

  • Mathematica
    With[{perf = Select[Range[10000], DivisorSigma[1, #] == 2# &]}, Rest[Union[Total/@Subsets[perf]]]] (* Harvey P. Dale, Feb 07 2012 *)
  • PARI
    vecsum(v)=sum(i=1,#v,v[i]);
    v=apply(n->binomial(n+1,2), select(k->ispseudoprime(k), vector(15,n,2^prime(n)-1))); u=List();for(i=0,2^#v-1,listput(u,vecsum(vecextract(v,i))));vecsort(Vec(u)) \\ Charles R Greathouse IV, Feb 09 2012

A204878 Numbers that cannot be written as sum of perfect numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 35, 37, 38, 39, 41, 43, 44, 45, 47, 49, 50, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 20 2012

Keywords

Comments

Complement of A204879; A097796(a(n)) = 0.

Crossrefs

Cf. A000396 (perfect numbers).

Programs

  • Haskell
    import Data.List (elemIndices)
    a204878 n = a204878_list !! (n-1)
    a204878_list = map (+ 1) $ elemIndices 0 a097796_list

Formula

a(38+k) = 49+2k for all k>0 (up to occurrence of an odd perfect number, known to be > 10^300, if it exists). - M. F. Hasler, Feb 09 2012
Showing 1-3 of 3 results.