cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204922 Ordered differences of Fibonacci numbers.

Original entry on oeis.org

1, 2, 1, 4, 3, 2, 7, 6, 5, 3, 12, 11, 10, 8, 5, 20, 19, 18, 16, 13, 8, 33, 32, 31, 29, 26, 21, 13, 54, 53, 52, 50, 47, 42, 34, 21, 88, 87, 86, 84, 81, 76, 68, 55, 34, 143, 142, 141, 139, 136, 131, 123, 110, 89, 55, 232, 231, 230, 228, 225, 220, 212, 199, 178
Offset: 1

Views

Author

Clark Kimberling, Jan 21 2012

Keywords

Comments

For a guide to related sequences, see A204892. For numbers not in A204922, see A050939.
From Emanuele Munarini, Mar 29 2012: (Start)
Diagonal elements = Fibonacci numbers F(n+1) (A000045)
First column = Fibonacci numbers - 1 (A000071);
Second column = Fibonacci numbers - 2 (A001911);
Row sums = n*F(n+3) - F(n+2) + 2 (A014286);
Central coefficients = F(2*n+1) - F(n+1) (A096140).
(End)

Examples

			a(1) = s(2) - s(1) = F(3) - F(2) = 2-1 = 1, where F=A000045;
a(2) = s(3) - s(1) = F(4) - F(2) = 3-1 = 2;
a(3) = s(3) - s(2) = F(4) - F(3) = 3-2 = 1;
a(4) = s(4) - s(1) = F(5) - F(2) = 5-1 = 4.
From _Emanuele Munarini_, Mar 29 2012: (Start)
Triangle begins:
   1;
   2,  1;
   4,  3,  2;
   7,  6,  5,  3;
  12, 11, 10,  8,  5;
  20, 19, 18, 16, 13,  8;
  33, 32, 31, 29, 26, 21, 13;
  54, 53, 52, 50, 47, 42, 34, 21;
  88, 87, 86, 84, 81, 76, 68, 55, 34;
  ... (End)
		

Crossrefs

Programs

  • Magma
    /* As triangle */ [[Fibonacci(n+2)-Fibonacci(k+1) : k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Aug 04 2015
    
  • Mathematica
    (See the program at A204924.)
  • Maxima
    create_list(fib(n+3)-fib(k+2),n,0,20,k,0,n); /* Emanuele Munarini, Mar 29 2012 */
    
  • PARI
    {T(n,k) = fibonacci(n+2) - fibonacci(k+1)};
    for(n=1,15, for(k=1,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Feb 03 2019
    
  • Sage
    [[fibonacci(n+2) - fibonacci(k+1) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Feb 03 2019

Formula

From Emanuele Munarini, Mar 29 2012: (Start)
T(n,k) = Fibonacci(n+2) - Fibonacci(k+1).
T(n,k) = Sum_{i=k..n} Fibonacci(i+1). (End)