A204922 Ordered differences of Fibonacci numbers.
1, 2, 1, 4, 3, 2, 7, 6, 5, 3, 12, 11, 10, 8, 5, 20, 19, 18, 16, 13, 8, 33, 32, 31, 29, 26, 21, 13, 54, 53, 52, 50, 47, 42, 34, 21, 88, 87, 86, 84, 81, 76, 68, 55, 34, 143, 142, 141, 139, 136, 131, 123, 110, 89, 55, 232, 231, 230, 228, 225, 220, 212, 199, 178
Offset: 1
Examples
a(1) = s(2) - s(1) = F(3) - F(2) = 2-1 = 1, where F=A000045; a(2) = s(3) - s(1) = F(4) - F(2) = 3-1 = 2; a(3) = s(3) - s(2) = F(4) - F(3) = 3-2 = 1; a(4) = s(4) - s(1) = F(5) - F(2) = 5-1 = 4. From _Emanuele Munarini_, Mar 29 2012: (Start) Triangle begins: 1; 2, 1; 4, 3, 2; 7, 6, 5, 3; 12, 11, 10, 8, 5; 20, 19, 18, 16, 13, 8; 33, 32, 31, 29, 26, 21, 13; 54, 53, 52, 50, 47, 42, 34, 21; 88, 87, 86, 84, 81, 76, 68, 55, 34; ... (End)
Links
- G. C. Greubel, Rows n=1..100 of triangle, flattened
Programs
-
Magma
/* As triangle */ [[Fibonacci(n+2)-Fibonacci(k+1) : k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Aug 04 2015
-
Mathematica
(See the program at A204924.)
-
Maxima
create_list(fib(n+3)-fib(k+2),n,0,20,k,0,n); /* Emanuele Munarini, Mar 29 2012 */
-
PARI
{T(n,k) = fibonacci(n+2) - fibonacci(k+1)}; for(n=1,15, for(k=1,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Feb 03 2019
-
Sage
[[fibonacci(n+2) - fibonacci(k+1) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Feb 03 2019
Formula
From Emanuele Munarini, Mar 29 2012: (Start)
T(n,k) = Fibonacci(n+2) - Fibonacci(k+1).
T(n,k) = Sum_{i=k..n} Fibonacci(i+1). (End)
Comments