A205508 a(n) = Pell(n) * A004018(n) for n>=1 with a(0)=1, where A004018(n) is the number of ways of writing n as a sum of 2 squares.
1, 4, 8, 0, 48, 232, 0, 0, 1632, 3940, 19024, 0, 0, 267688, 0, 0, 1883328, 9093512, 10976840, 0, 127955424, 0, 0, 0, 0, 15740857452, 25334527696, 0, 0, 356483857192, 0, 0, 2508054264192, 0, 29236023007504, 0, 85200014758320, 411382062287848, 0, 0, 5788584895037376
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 4*x + 8*x^2 + 48*x^4 + 232*x^5 + 1632*x^8 + 3940*x^9 + 19024*x^10 +... Compare the g.f to the square of the Jacobi theta_3 series: theta_3(x)^2 = 1 + 4*x + 4*x^2 + 4*x^4 + 8*x^5 + 4*x^8 + 4*x^9 + 8*x^10 +...+ A004018(n)*x^n +... The g.f. equals the sum: A(x) = 1 + 4*x/(1-2*x-x^2) - 4*5*x^3/(1-14*x^3-x^6) + 4*29*x^5/(1-82*x^5-x^10) - 4*169*x^7/(1-478*x^7-x^14) + 4*985*x^9/(1-2786*x^9-x^18) - 4*5741*x^11/(1-16238*x^11-x^22) + 4*33461*x^13/(1-94642*x^13-x^26) - 4*195025*x^15/(1-551614*x^15-x^30) +... which involves odd-indexed Pell and companion Pell numbers.
Comments