cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A205508 a(n) = Pell(n) * A004018(n) for n>=1 with a(0)=1, where A004018(n) is the number of ways of writing n as a sum of 2 squares.

Original entry on oeis.org

1, 4, 8, 0, 48, 232, 0, 0, 1632, 3940, 19024, 0, 0, 267688, 0, 0, 1883328, 9093512, 10976840, 0, 127955424, 0, 0, 0, 0, 15740857452, 25334527696, 0, 0, 356483857192, 0, 0, 2508054264192, 0, 29236023007504, 0, 85200014758320, 411382062287848, 0, 0, 5788584895037376
Offset: 0

Views

Author

Paul D. Hanna, Jan 28 2012

Keywords

Comments

Compare to the g.f. of A004018 given by the Lambert series identity:
1 + 4*Sum_{n>=0} (-1)^n*x^(2*n+1)/(1 - x^(2*n+1)) = (1 + 2*Sum_{n>=1} x^(n^2))^2.

Examples

			 G.f.: A(x) = 1 + 4*x + 8*x^2 + 48*x^4 + 232*x^5 + 1632*x^8 + 3940*x^9 + 19024*x^10 +...
Compare the g.f to the square of the Jacobi theta_3 series:
theta_3(x)^2 = 1 + 4*x + 4*x^2 + 4*x^4 + 8*x^5 + 4*x^8 + 4*x^9 + 8*x^10 +...+ A004018(n)*x^n +...
The g.f. equals the sum:
A(x) = 1 + 4*x/(1-2*x-x^2) - 4*5*x^3/(1-14*x^3-x^6) + 4*29*x^5/(1-82*x^5-x^10) - 4*169*x^7/(1-478*x^7-x^14) + 4*985*x^9/(1-2786*x^9-x^18) - 4*5741*x^11/(1-16238*x^11-x^22) + 4*33461*x^13/(1-94642*x^13-x^26) - 4*195025*x^15/(1-551614*x^15-x^30) +...
which involves odd-indexed Pell and companion Pell numbers.
		

Crossrefs

Programs

  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)}
    {A002203(n)=Pell(n-1)+Pell(n+1)}
    {a(n)=polcoeff((1+4*sum(m=0,n+1,(-1)^m*Pell(2*m+1)*x^(2*m+1)/(1-A002203(2*m+1)*x^(2*m+1)-x^(4*m+2)+x*O(x^n))))^(1/1),n)}

Formula

G.f.: 1 + 4*Sum_{n>=0} (-1)^n*Pell(2*n+1)*x^(2*n+1) / (1 - A002203(2*n+1)*x^(2*n+1) - x^(4*n+2)), where A002203 is the companion Pell numbers.