A205783 Complement of A206074, a coding of reducible polynomials over Q (with coefficients 0 or 1).
1, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 70, 72, 74, 75, 76, 78, 80, 82, 84, 85, 86, 88, 90, 92, 93, 94, 95, 96, 98, 99, 100
Offset: 1
Keywords
Examples
The reducible polynomials matching the first four terms: 1 = 1(base 2) matches 1 4 = 100(base 2) matches x^2 6 = 110(base 2) matches x^2 + x 8 = 1000(base 2) matches x^3 9 = 1001(base 2) matches x^3 + 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..21951
Crossrefs
Programs
-
Mathematica
t = Table[IntegerDigits[n, 2], {n, 1, 850}]; b[n_] := Reverse[Table[x^k, {k, 0, n}]] p[n_, x_] := t[[n]].b[-1 + Length[t[[n]]]] Table[p[n, x], {n, 1, 15}] u = {}; Do[n++; If[IrreduciblePolynomialQ[p[n, x]], AppendTo[u, n]], {n, 300}]; u (* A206074 *) Complement[Range[200], u] (* A205783 *) b[n_] := FromDigits[IntegerDigits[u, 2][[n]]] Table[b[n], {n, 1, 40}] (* A206073 *)
-
PARI
isA205783(n) = ((n > 0) && !polisirreducible(Pol(binary(n)))); n = 0; i = 0; while(n < 32768, n++; if(isA205783(n), i++; write("b205783.txt", i, " ", n))); \\ Antti Karttunen, Jul 28 2015 after Joerg Arndt's code for A206074.
Formula
Other identities and observations. For all n >= 1:
A255573(a(n)) = n.
Comments