cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A260426 a(1) = 1, a(A206074(n)) = A014580(a(n)), a(A205783(1+n)) = A091242(a(n)), where A014580 [respectively A091242] give binary codes for irreducible [resp. reducible] polynomials over GF(2), while A206074 and A205783 give similar codes for polynomials with coefficients 0 or 1 that are irreducible [resp. reducible] over Q.

Original entry on oeis.org

1, 2, 3, 4, 7, 5, 11, 6, 8, 12, 25, 9, 13, 17, 10, 14, 47, 18, 19, 34, 15, 20, 31, 24, 55, 16, 21, 62, 137, 26, 37, 27, 45, 22, 28, 42, 59, 33, 71, 23, 87, 29, 41, 79, 166, 35, 61, 49, 36, 58, 30, 38, 319, 54, 91, 76, 44, 89, 97, 32, 203, 108, 39, 53, 99, 200, 67, 46, 103, 78, 185, 64, 131, 48, 75, 40, 379, 50, 73, 373, 109, 70, 433, 113, 95, 57, 1123, 111, 143, 121
Offset: 1

Views

Author

Antti Karttunen, Jul 26 2015

Keywords

Comments

Each term of A260427 resides in a separate infinite cycle. This follows because any polynomial with (coefficients 0 or 1) that is irreducible over GF(2) is also irreducible over Q, in other words, A014580 is a subset of A206074. [See Thomas Ordowski's Feb 21 2014 comment in A014580] and thus any term of A091242 in A206074 is trapped into a trajectory containing only terms of A014580.

Crossrefs

Inverse: A260425.
Related permutations: A246202, A245703, A260421, A260424.
Differs from A245703 for the first time at n=25, where a(25)=55, while A245703(25)=16.

Programs

Formula

a(1) = 1; for n > 1, if A257000(n) = 1 [when n is in A206074], then a(n) = A014580(a(A255574(n))), otherwise [when n is in A205783], a(n) = A091242(a(A255572(n))).
As a composition of related permutations:
a(n) = A246202(A260421(n)).
a(n) = A245703(A260424(n)).

A255572 a(n) = Number of terms larger than one in range 0 .. n of A205783.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 5, 6, 6, 7, 8, 9, 9, 10, 10, 11, 12, 13, 13, 14, 14, 15, 16, 17, 17, 18, 18, 19, 20, 21, 22, 23, 23, 24, 25, 26, 26, 27, 27, 28, 29, 30, 30, 31, 32, 33, 34, 35, 35, 36, 36, 37, 38, 39, 39, 40, 40, 41, 42, 43, 44, 45, 45, 46, 46, 47, 47, 48, 48, 49, 50, 51, 51, 52, 52, 53, 53
Offset: 0

Views

Author

Antti Karttunen, May 14 2015

Keywords

Crossrefs

Essentially one less than A255573 (after the initial zero).

Programs

  • PARI
    A255572_write_bfile(up_to_n) = { my(n,a_n=0); for(n=0, up_to_n, if(((n > 1) && !polisirreducible(Pol(binary(n)))),a_n++); write("b255572.txt", n, " ", a_n)); };
    A255572_write_bfile(8192);

Formula

Other identities and observations. For all n >= 1:
a(n) = A255573(n) - 1.
a(n) <= A065855(n).
a(n) <= A091245(n).

A260421 a(1) = 1, a(A206074(n)) = 1 + (2*a(n)), a(A205783(1+n)) = 2*a(n), where A206074 and A205783 give binary codes for polynomials with coefficients 0 or 1 that are irreducible [resp. reducible] over Q.

Original entry on oeis.org

1, 3, 7, 2, 15, 6, 5, 14, 4, 30, 31, 12, 13, 10, 28, 8, 11, 60, 29, 62, 24, 26, 9, 20, 61, 56, 16, 22, 63, 120, 25, 58, 124, 48, 52, 18, 27, 40, 122, 112, 21, 32, 57, 44, 126, 240, 17, 50, 116, 248, 96, 104, 23, 36, 121, 54, 80, 244, 59, 224, 125, 42, 64, 114, 88, 252, 49, 480, 53, 34, 19, 100, 41, 232, 496, 192, 123, 208, 113, 46, 33, 72, 45
Offset: 1

Views

Author

Antti Karttunen, Jul 25 2015

Keywords

Crossrefs

Inverse: A260422.
Related permutations: A246201, A246377, A260424, A260426.

Programs

  • PARI
    allocatemem(123456789);
    uplim = 2^20;
    v255574 = vector(uplim); A255574 = n -> v255574[n];
    A255572 = n -> (n - A255574(n) - 1);
    isA206074(n) = polisirreducible(Pol(binary(n)));
    v255574[1] = 0; i=0; j=0; n=2; while((n < uplim), v255574[n] = v255574[n-1]+isA206074(n); n++);
    A260421(n) = if(1==n, 1, if(isA206074(n), 1 + 2*(A260421(A255574(n))), 2*(A260421(A255572(n)))));
    for(n=1, 8192, write("b260421.txt", n, " ", A260421(n)));

Formula

If A257000(n) = 1 [when n is one of the terms of A206074] then a(n) = 1 + 2*a(A255574(n)), otherwise a(n) = 2*A260421(A255572(n)).
As a composition of related permutations:
a(n) = A246377(A260424(n)).
a(n) = A246201(A260426(n)).

A260422 a(1) = 1, a(2n) = A205783(1+a(n)), a(2n+1) = A206074(a(n)), where A206074 and A205783 give binary codes for polynomials with coefficients 0 or 1 that are irreducible [resp. reducible] over Q.

Original entry on oeis.org

1, 4, 2, 9, 7, 6, 3, 16, 23, 14, 17, 12, 13, 8, 5, 27, 47, 36, 71, 24, 41, 28, 53, 21, 31, 22, 37, 15, 19, 10, 11, 42, 81, 70, 149, 54, 109, 106, 239, 38, 73, 62, 127, 44, 83, 80, 171, 34, 67, 48, 91, 35, 69, 56, 113, 26, 43, 32, 59, 18, 25, 20, 29, 63, 131, 122, 271, 105, 233, 216, 477, 82, 173, 159, 353, 155, 347, 345, 787, 57
Offset: 1

Views

Author

Antti Karttunen, Jul 25 2015

Keywords

Comments

This sequence can be represented as a binary tree. Each left hand child is produced as A205783(1+n), and each right hand child as A206074(n), when the parent contains n:
|
...................1...................
4 2
9......../ \........7 6......../ \........3
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
16 23 14 17 12 13 8 5
27 47 36 71 24 41 28 53 21 31 22 37 15 19 10 11
etc.

Crossrefs

Inverse: A260421.
Related permutations: A246202, A246378, A260423, A260425.
Differs from A246378 for the first time at n=16, where a(16)=27, while A246378(16)=26.

Programs

  • PARI
    uplim = (2^21) + (2^20);
    v206074 = vector(uplim);
    v205783 = vector(uplim); v205783[1] = 1;
    isA206074(n) = polisirreducible(Pol(binary(n)));
    i=0; j=1; n=2; while((n < uplim), if(!(n%65536),print1(n,", "));  if(isA206074(n), i++; v206074[i] = n, j++; v205783[j] = n); n++); print(n);
    A260422(n) = if(1==n, 1, if(0==(n%2), v205783[1+A260422(n/2)], v206074[A260422((n-1)/2)]));
    for(n=1, 8192, write("b260422.txt", n, " ", A260422(n)));

Formula

a(1) = 1, a(2n) = A205783(1+a(n)), a(2n+1) = A206074(a(n)).
As a composition of related permutations:
a(n) = A260423(A246378(n)).
a(n) = A260425(A246202(n)).

A255573 a(n) = Number of terms of A205783 (including 1) in range 0 .. n.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 6, 7, 7, 8, 9, 10, 10, 11, 11, 12, 13, 14, 14, 15, 15, 16, 17, 18, 18, 19, 19, 20, 21, 22, 23, 24, 24, 25, 26, 27, 27, 28, 28, 29, 30, 31, 31, 32, 33, 34, 35, 36, 36, 37, 37, 38, 39, 40, 40, 41, 41, 42, 43, 44, 45, 46, 46, 47, 47, 48, 48, 49, 49, 50, 51, 52, 52
Offset: 0

Views

Author

Antti Karttunen, May 14 2015

Keywords

Crossrefs

Essentially one more than A255572 (after the initial zero).

Programs

  • PARI
    A255573_write_bfile(up_to_n) = { my(n,a_n=0); for(n=0, up_to_n, if(((n > 0) && !polisirreducible(Pol(binary(n)))),a_n++); write("b255573.txt", n, " ", a_n)); };
    A255573_write_bfile(8192);

Formula

a(n) = n - A255574(n).
Other identities and observations. For all n >= 1:
a(n) = 1 + A255572(n).
a(n) <= A062298(n).

A260423 a(1) = 1, a(prime(n)) = A206074(a(n)), a(composite(n)) = A205783(1+a(n)), where A206074 and A205783 give binary codes for polynomials with coefficients 0 or 1 that are irreducible [resp. reducible] over Q.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 25, 32, 29, 33, 34, 35, 36, 38, 31, 40, 42, 44, 37, 46, 41, 39, 49, 45, 43, 50, 51, 52, 54, 57, 47, 48, 60, 63, 65, 56, 53, 68, 55, 62, 58, 74, 66, 64, 59, 75, 76, 78, 61, 82, 67, 86, 70, 72, 92, 95, 69, 98, 85, 80, 71, 102, 84, 94, 88, 111
Offset: 1

Views

Author

Antti Karttunen, Jul 25 2015

Keywords

Crossrefs

Inverse: A260424.
Related permutations: A245703, A246377, A260422, A260425.

Programs

  • PARI
    allocatemem(123456789);
    default(primelimit,4294965247);
    uplim = 2^23;
    v206074 = vector(uplim); A206074 = n -> v206074[n];
    v205783 = vector(uplim); A205783 = n -> v205783[n];
    isA206074(n) = polisirreducible(Pol(binary(n)));
    v205783[1] = 1; i=0; j=1; n=2; while((n < uplim), if(!(n%65536),print1(n,", ")); if(isA206074(n), i++; v206074[i] = n, j++; v205783[j] = n); n++); print(n);
    A260423(n) = if(1==n, 1, if(isprime(n), A206074(A260423(primepi(n))), A205783(1+A260423(n-primepi(n)-1))));
    for(n=1, 10001, write("b260423.txt", n, " ", A260423(n)));
    
  • Scheme
    (definec (A260423 n) (cond ((<= n 1) n) ((= 1 (A010051 n)) (A206074 (A260423 (A000720 n)))) (else (A205783 (+ 1 (A260423 (A065855 n)))))))

Formula

a(1) = 1; for n > 1, if A010051(n) = 1 [when n is a prime], then a(n) = A206074(a(A000720(n))), otherwise [when n is a composite], a(n) = A205783(1+a(A065855(n))).
As a composition of related permutations:
a(n) = A260422(A246377(n)).
a(n) = A260425(A245703(n)).

A260424 a(1) = 1, a(A206074(n)) = prime(a(n)), a(A205783(1+n)) = composite(a(n)), where A206074 and A205783 give binary codes for polynomials with coefficients 0 or 1 that are irreducible [resp. reducible] over Q.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 29, 25, 26, 27, 31, 28, 37, 30, 32, 33, 34, 35, 41, 36, 44, 38, 43, 39, 47, 40, 46, 42, 53, 54, 45, 48, 49, 50, 59, 51, 61, 58, 52, 63, 67, 55, 71, 62, 56, 66, 57, 65, 73, 60, 79, 75, 83, 76, 89, 64, 68, 69, 109, 70, 97, 82, 101, 72, 103, 85, 81, 74, 127
Offset: 1

Views

Author

Antti Karttunen, Jul 25 2015

Keywords

Comments

After 1, each term of A206075 resides in a separate infinite cycle. This follows because primes (A000040) is a subsequence of A206074 [see Thomas Ordowski's Feb 19 2014 comment in A206074] and thus each composite in A206074 is trapped into a trajectory containing only primes.

Crossrefs

Programs

  • PARI
    allocatemem(123456789);
    default(primelimit,4294965247);
    uplim = 2^20;
    v255574 = vector(uplim); A255574 = n -> v255574[n];
    A255572 = n -> (n - A255574(n) - 1);
    A257000(n) = polisirreducible(Pol(binary(n)));
    v255574[1] = 0; i=0; j=0; n=2; while((n < uplim), v255574[n] = v255574[n-1]+A257000(n); n++);
    A002808(n)={ my(k=-1); while( -n + n += -k + k=primepi(n), ); n}; \\ This function from M. F. Hasler
    A260424(n) = if(1==n, 1, if(A257000(n), prime(A260424(A255574(n))), A002808(A260424(A255572(n)))));
    for(n=1, 8192, write("b260424.txt", n, " ", A260424(n)));

Formula

a(1) = 1; for n > 1, if A257000(n) = 1 [when n is in A206074], then a(n) = A000040(a(A255574(n))), otherwise [when n is in A205783], a(n) = A002808(a(A255572(n))).
As a composition of related permutations:
a(n) = A246378(A260421(n)).
a(n) = A245704(A260426(n)).

A260425 a(1) = 1, a(A014580(n)) = A206074(a(n)), a(A091242(n)) = A205783(1+a(n)), where A014580(n) [resp. A091242(n)] give binary codes for n-th irreducible [resp. reducible] polynomial over GF(2), while A206074 and A205783 give similar codes for polynomials with coefficients 0 or 1 that are irreducible [resp. reducible] over Q.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 5, 9, 12, 15, 7, 10, 13, 16, 21, 26, 14, 18, 19, 22, 27, 34, 40, 24, 11, 30, 32, 35, 42, 51, 23, 60, 38, 20, 46, 49, 31, 52, 63, 76, 43, 36, 92, 57, 33, 68, 17, 74, 48, 78, 95, 114, 64, 54, 25, 135, 86, 50, 37, 102, 47, 28, 111, 72, 118, 140, 67, 165, 96, 82, 39, 195, 79, 128, 75, 56, 150, 70, 44
Offset: 1

Views

Author

Antti Karttunen, Jul 26 2015

Keywords

Crossrefs

Inverse: A260426.
Related permutations: A246201, A245704, A260422, A260423.
Differs from A245704 for the first time at n=16, where a(16) = 26, while A245704(16) = 25.

Programs

Formula

a(1) = 1; for n > 1, if A091225(n) = 1 [when n is in A014580], then a(n) = A206074(a(A091226(n))), otherwise [when n is in A091242], a(n) = A205783(1+a(A091245(n))).
As a composition of related permutations:
a(n) = A260422(A246201(n)).
a(n) = A260423(A245704(n)).

A206074 n-th irreducible polynomial over Q (with coefficients 0 or 1) evaluated at x=2.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 53, 55, 59, 61, 67, 69, 71, 73, 77, 79, 81, 83, 87, 89, 91, 97, 101, 103, 107, 109, 113, 115, 117, 121, 127, 131, 137, 139, 143, 145, 149, 151, 157, 163, 167, 169, 171, 173, 179, 181, 185, 191, 193, 197, 199, 203, 205, 209, 211, 213, 223, 227, 229
Offset: 1

Views

Author

Clark Kimberling, Feb 03 2012

Keywords

Comments

Is every prime present?
Yes, see the Filaseta reference. - Thomas Ordowski, Feb 19 2014
Corresponding evaluation at x=10 is A206073. - Michael Somos, Feb 26 2014

Examples

			(See the example at A206073.)
		

Crossrefs

Cf. A206073, A205783 (complement), A206075 (nonprime terms), A014580 (irreducible over GF(2), a subsequence of this one), A000040 (primes, also a subsequence), A260427 (terms that are reducible over GF(2)).
Cf. A255574 (left inverse).
Cf. also permutations A260421 - A260426.
Disjoint union of A257688 (without 1) and A260428.
a(n) differs from A186891(n+1) for the first time at n=21, where a(21) = 67, while A186891(22) = 65, a term missing from here. There are several other sequences that do not diverge until after approx. the twentieth term from this one (see the context-links).

Programs

  • Mathematica
    t = Table[IntegerDigits[n, 2], {n, 1, 850}];
    b[n_] := Reverse[Table[x^k, {k, 0, n}]]
    p[n_, x_] := t[[n]].b[-1 + Length[t[[n]]]]
    Table[p[n, x], {n, 1, 15}]
    u = {}; Do[n++; If[IrreduciblePolynomialQ[p[n, x]],
    AppendTo[u, n]], {n, 300}];
    u                          (* A206074 *)
    Complement[Range[200], u]  (* A205783 *)
    b[n_] := FromDigits[IntegerDigits[u, 2][[n]]]
    Table[b[n], {n, 1, 40}]    (* A206073 *)
  • PARI
    for(n=2, 10^3, if( polisirreducible( Pol(binary(n)) ), print1(n,", ") ) ); \\ Joerg Arndt, Feb 19 2014

Formula

Other identities and observations. For all n >= 1:
A255574(a(n)) = n.

Extensions

Clarified name, added more terms, Joerg Arndt, Feb 20 2014

A175526 A000120-abundant numbers.

Original entry on oeis.org

4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 112, 114, 115, 116, 117, 118, 120
Offset: 1

Views

Author

Vladimir Shevelev, Dec 03 2010

Keywords

Comments

Definition see in A175522. All even numbers > 2 are in the sequence.
A192895(a(n)) > 0. Reinhard Zumkeller, Jul 12 2011

Crossrefs

Cf. A175522 (perfect version), A175524 (deficient version), A257691 (complement, non-abundant version).
Cf. also A005100, A005101.
a(n) differs from A091212(n) and from A205783(n+1) for the first time at n=37, where a(37) = 55, while 55 is missing from both A091212 and A205783.
Differs from A192506 for the first time at n=54, where a(54) = 77, while 77 is missing from A192506.

Programs

  • Haskell
    import Data.List (findIndices)
    a175526 n = a175526_list !! (n-1)
    a175526_list = map (+ 1) $ findIndices (> 0) a192895_list
    -- Reinhard Zumkeller, Jul 12 2011
    
  • Maple
    isA175526 := proc(n) s := 0 ; for d in (numtheory[divisors](n) minus {n}) do s := s+A000120(d) ; end do: evalb(s> A000120(n)) ; end proc:
    for n from 1 to 120 do if isA175526(n) then printf("%d,",n); end if; end do: # R. J. Mathar, Jul 11 2011
  • Mathematica
    okQ[n_] := DivisorSum[n, Total[IntegerDigits[#, 2]]*(-1)^Boole[#==n]&]>0; Select[Range[120], okQ] (* Jean-François Alcover, Dec 06 2015 *)
  • PARI
    A192895(n) = sumdiv(n, d, hammingweight(d)*(-1)^(d==n)); \\ Charles R Greathouse IV, Feb 07 2013
    isA175526(n) = (A192895(n) > 0);
    n = 0; i = 0; while(i < 10000, n++; if(isA175526(n), i++; write("b175526.txt", i, " ", n)));
    \\ Antti Karttunen, May 11 2015
    
  • PARI
    is(n)=sumdiv(n,d,hammingweight(d))>2*hammingweight(n) \\ Charles R Greathouse IV, Jan 28 2016
  • Sage
    is_A175526 = lambda x: sum(A000120(d) for d in divisors(x)) > 2*A000120(x)
    A175526 = filter(is_A175526, IntegerRange(1, 10**4))
    # D. S. McNeil, Dec 04 2010
    
Showing 1-10 of 14 results. Next