cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A329256 Expansion of e.g.f. exp(Sum_{k>=1} x^(k^2) / (k^2)!).

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 16, 36, 106, 443, 1796, 6161, 23816, 122266, 643644, 2934296, 14002237, 83835433, 532282819, 3005258539, 17039094646, 115611682810, 848428608644, 5682350940168, 37297365940462, 281594230420802, 2323660209441962, 17929392395804072
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 27; CoefficientList[Series[Exp[Sum[x^(k^2)/(k^2)!, {k, 1, Floor[nmax^(1/2)] + 1}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] Boole[IntegerQ[k^(1/2)]] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 27}]
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, sqrtint(N), x^k^2/(k^2)!)))) \\ Seiichi Manyama, Apr 29 2022
    
  • PARI
    a(n) = if(n==0, 1, sum(k=1, sqrtint(n), binomial(n-1, k^2-1)*a(n-k^2))); \\ Seiichi Manyama, Apr 29 2022

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A010052(k) * a(n-k).

A205803 E.g.f.: -log( Sum_{n>=0} (-x)^(n*(n+1)/2) / (n*(n+1)/2)! ).

Original entry on oeis.org

1, 1, 3, 10, 44, 249, 1693, 13384, 120932, 1229759, 13894429, 172677450, 2341111850, 34385290940, 543885462121, 9217332132024, 166621796893824, 3200275345024464, 65082833538054240, 1397097303096855578, 31569176387677926733, 749012642530028865010
Offset: 1

Views

Author

Paul D. Hanna, Jan 31 2012

Keywords

Examples

			E.g.f.: A(x) = x + x^2/2! + 3*x^3/3! + 10*x^4/4! + 44*x^5/5! + 249*x^6/6! +...
where
exp(-A(x)) = 1 - x - x^3/3! + x^6/6! + x^10/10! - x^15/15! - x^21/21! +...
		

Crossrefs

Cf. A205804.

Programs

  • PARI
    {a(n) = n!*polcoeff(-log(sum(m=0, sqrtint(2*n+1), (-x)^(m*(m+1)/2)/(m*(m+1)/2)!+x*O(x^n))), n)}
    for(n=1,25,print1(a(n),", "))

A305620 Expansion of e.g.f. log(1 + Sum_{k>=1} x^(k^2)/k^2).

Original entry on oeis.org

1, -1, 2, 0, -6, 60, -540, 3780, 12600, -199080, 3074400, -45738000, 511434000, -5621616000, 55394539200, 960323364000, -24001273296000, 498178528848000, -9994137465312000, 156104172544320000, -2076607873660320000, 18061446353670720000, 206725394268993600000
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 06 2018

Keywords

Examples

			E.g.f.: A(x) = x - x^2/2! + 2*x^3/3! - 6*x^5/5! + 60*x^6/6! - 540*x^7/7! + ...
exp(A(x)) = 1 + x + x^4/4 + x^9/9 + x^16/16 + ... + x^A000290(k)/A000290(k) + ...
exp(exp(A(x))-1) = 1 + x + x^2/2! + x^3/3! + 7*x^4/4! + 31*x^5/5! + ... + A205801(k)*x^k/k! + ... = Product_{j>=1} 1/(1 - x^j)^(A008836(j)/j).
		

Crossrefs

Programs

  • Maple
    N:= 50: # for a(1)..a(N)
    g:= log(1 + add(x^(k^2)/k^2,k=1..floor(sqrt(N)))):
    S:= series(g,x,N+1):
    seq(coeff(S,x,n)*n!,n=1..N); # Robert Israel, Jun 07 2018
  • Mathematica
    nmax = 23; Rest[CoefficientList[Series[Log[1 + Sum[x^k^2/k^2, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!]
    nmax = 23; Rest[CoefficientList[Series[Log[1 + Log[Product[1/(1 - x^k)^(LiouvilleLambda[k]/k), {k, 1, nmax}]]], {x, 0, nmax}], x] Range[0, nmax]!]
    a[n_] := a[n] = Boole[IntegerQ[n^(1/2)]] (n - 1)! - Sum[k Binomial[n, k] Boole[IntegerQ[(n - k)^(1/2)]] (n - k - 1)! a[k], {k, 1, n - 1}]/n; a[0] = 0; Table[a[n], {n, 23}]

A329259 Expansion of e.g.f. -log(1 - Sum_{k>=1} x^(k^2) / (k^2)!).

Original entry on oeis.org

0, 1, 1, 2, 7, 29, 150, 930, 6755, 56071, 523540, 5430710, 61967070, 771361525, 10402051660, 151065164250, 2350567168951, 39013029955917, 687979755287416, 12845920452293594, 253183788618567525, 5252704310496986070, 114424576082127987830, 2611313756103949479660
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[-Log[1 - Sum[x^(k^2)/(k^2)!, {k, 1, Floor[nmax^(1/2)] + 1}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Boole[IntegerQ[n^(1/2)]] + Sum[Binomial[n, k] Boole[IntegerQ[(n - k)^(1/2)]] k a[k], {k, 1, n - 1}]/n; a[0] = 0; Table[a[n], {n, 0, 23}]

Formula

a(0) = 0; a(n) = A010052(n) + (1/n) * Sum_{k=1..n-1} binomial(n,k) * A010052(n-k) * k * a(k).
Showing 1-4 of 4 results.