A205811
G.f.: Product_{n>=1} [ (1 - x^n) / (1 - (n+1)^n*x^n) ]^(1/n).
Original entry on oeis.org
1, 1, 6, 29, 221, 1897, 23502, 335334, 5923570, 119354491, 2758647259, 71079498533, 2031108928680, 63520842121792, 2161164726505952, 79394066773371245, 3133259427956392983, 132166451829847198316, 5934636812034634649249, 282609413111134846839482
Offset: 0
G.f.: A(x) = 1 + x + 6*x^2 + 29*x^3 + 221*x^4 + 1897*x^5 + 23502*x^6 +...
where the g.f. equals the product:
A(x) = (1-x)/(1-2*x) * ((1-x^2)/(1-3^2*x^2))^(1/2) * ((1-x^3)/(1-4^3*x^3))^(1/3) * ((1-x^4)/(1-5^4*x^4))^(1/4) * ((1-x^5)/(1-6^5*x^5))^(1/5) *...
The logarithm equals the l.g.f. of A205812:
log(A(x)) = x + 11*x^2/2 + 70*x^3/3 + 719*x^4/4 + 7806*x^5/5 + 122534*x^6/6 +...
-
{a(n)=polcoeff(exp(sum(m=1,n+1,x^m/m*sum(k=1,m,binomial(m,k)*sigma(m,k))+x*O(x^n))),n)}
-
{a(n)=polcoeff(prod(k=1,n,((1-x^k)/(1-(k+1)^k*x^k +x*O(x^n)))^(1/k)),n)}
A205815
a(n) = Sum_{k=1..n} binomial(n,k) * sigma(n,k) * 2^(n-k).
Original entry on oeis.org
1, 17, 136, 1585, 16986, 282338, 4784900, 101750689, 2359918963, 62200943002, 1792160567088, 56765070059074, 1946195069937314, 72080471103535786, 2862427829603121696, 121449533922041845569, 5480386857784931063958, 262149577935595804303451
Offset: 1
L.g.f.: L(x) = x + 17*x^2/2 + 136*x^3/3 + 1585*x^4/4 + 16986*x^5/5 +...
Exponentiation yields the g.f. of A205814:
exp(L(x)) = 1 + x + 9*x^2 + 54*x^3 + 482*x^4 + 4239*x^5 + 55561*x^6 +...
Illustration of terms.
a(2) = 2*sigma(2,1)*2 + 1*sigma(2,2)*1 = 2*3*2 + 1*5*1 = 17;
a(3) = 3*sigma(3,1)*4 + 3*sigma(3,2)*2 + 1*sigma(3,3)*1 = 3*4*4 + 3*10*2 + 1*28*1 = 136;
a(4) = 4*sigma(4,1)*8 + 6*sigma(4,2)*4 + 4*sigma(4,3)*2 + 1*sigma(4,3)*1 = 4*7*8 + 6*21*4 + 4*73*2 + 1*273*1 = 1585.
-
Table[Sum[Binomial[n, k] * DivisorSigma[k, n] * 2^(n-k), {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Oct 08 2016 *)
-
{a(n)=sum(k=1, n, binomial(n, k)*sigma(n, k)*2^(n-k))}
A206813
Position of 3^n in joint ranking of {2^i}, {3^j}, {5^k}.
Original entry on oeis.org
2, 6, 9, 12, 15, 19, 22, 25, 29, 31, 35, 39, 41, 45, 48, 51, 54, 58, 61, 64, 68, 71, 74, 78, 81, 84, 87, 91, 93, 97, 101, 103, 107, 110, 113, 117, 120, 123, 126, 130, 132, 136, 140, 143, 146, 149, 153, 156, 159, 163, 165, 169, 173, 175, 179, 182, 185, 188
Offset: 1
The joint ranking begins with 2,3,4,5,8,9,16,25,27,32,64,81,125,128,243,256, so that
A205812=(1,3,5,7,10,11,14,...)
A205813=(2,6,9,12,15,...)
A205814=(4,8,13,18,23,...)
-
f[1, n_] := 2^n; f[2, n_] := 3^n;
f[3, n_] := 5^n; z = 1000;
d[n_, b_, c_] := Floor[n*Log[b, c]];
t[k_] := Table[f[k, n], {n, 1, z}];
t = Sort[Union[t[1], t[2], t[3]]];
p[k_, n_] := Position[t, f[k, n]];
Flatten[Table[p[1, n], {n, 1, z/8}]] (* A206812 *)
Table[n + d[n, 3, 2] + d[n, 5, 2],
{n, 1, 50}] (* A206812 *)
Flatten[Table[p[2, n], {n, 1, z/8}]] (* A206813 *)
Table[n + d[n, 2, 3] + d[n, 5, 3],
{n, 1, 50}] (* A206813 *)
Flatten[Table[p[3, n], {n, 1, z/8}]] (* A206814 *)
Table[n + d[n, 2, 5] + d[n, 3, 5],
{n, 1, 50}] (* A206814 *)
A206814
Position of 5^n in joint ranking of {2^i}, {3^j}, {5^k}.
Original entry on oeis.org
4, 8, 13, 18, 23, 27, 33, 37, 42, 47, 52, 56, 62, 66, 70, 76, 80, 85, 90, 95, 99, 105, 109, 114, 119, 124, 128, 134, 138, 142, 147, 152, 157, 161, 167, 171, 176, 181, 186, 190, 196, 200, 204, 210, 214, 219, 224, 229, 233, 239, 243, 248, 253, 258, 262
Offset: 1
The joint ranking begins with 2,3,4,5,8,9,16,25,27,32,64,81,125,128,243,256, so that
A205812=(1,3,5,7,10,11,14,...)
A205813=(2,6,9,12,15,...)
A205814=(4,8,13,18,23,...)
-
f[1, n_] := 2^n; f[2, n_] := 3^n;
f[3, n_] := 5^n; z = 1000;
d[n_, b_, c_] := Floor[n*Log[b, c]];
t[k_] := Table[f[k, n], {n, 1, z}];
t = Sort[Union[t[1], t[2], t[3]]];
p[k_, n_] := Position[t, f[k, n]];
Flatten[Table[p[1, n], {n, 1, z/8}]] (* A206812 *)
Table[n + d[n, 3, 2] + d[n, 5, 2],
{n, 1, 50}] (* A206812 *)
Flatten[Table[p[2, n], {n, 1, z/8}]] (* A206813 *)
Table[n + d[n, 2, 3] + d[n, 5, 3],
{n, 1, 50}] (* A206813 *)
Flatten[Table[p[3, n], {n, 1, z/8}]] (* A206814 *)
Table[n + d[n, 2, 5] + d[n, 3, 5],
{n, 1, 50}] (* A206814 *)
A206766
a(n) = Sum_{k=1..n} binomial(n,k) * sigma(n,k) * 3^(n-k).
Original entry on oeis.org
1, 23, 226, 3039, 33306, 594902, 10012010, 220553599, 5170061143, 138942811678, 4049569009674, 130045043225838, 4503599691290714, 168477832912220134, 6746676272050878036, 288487396687082933759, 13107200000016921588858, 630907565930072760920429
Offset: 1
L.g.f.: L(x) = x + 23*x^2/2 + 226*x^3/3 + 3039*x^4/4 + 33306*x^5/5 +...
Exponentiation yields the g.f. of A206765:
exp(L(x)) = 1 + x + 12*x^2 + 87*x^3 + 907*x^4 + 8393*x^5 + 118932*x^6 +...
Illustration of terms.
a(2) = 2*sigma(2,1)*3 + 1*sigma(2,2)*1 = 2*3*3 + 1*5*1 = 23;
a(3) = 3*sigma(3,1)*9 + 3*sigma(3,2)*3 + 1*sigma(3,3)*1 = 3*4*9 + 3*10*3 + 1*28*1 = 226;
a(4) = 4*sigma(4,1)*27 + 6*sigma(4,2)*9 + 4*sigma(4,3)*3 + 1*sigma(4,4)*1 = 4*7*27 + 6*21*9 + 4*73*3 + 1*273*1 = 3039.
-
{a(n)=sum(k=1, n, binomial(n, k)*sigma(n, k)*3^(n-k))}
-
{a(n)=n*polcoeff(sum(k=1, n, (1/k)*log((1-3^k*x^k)/(1-(k+3)^k*x^k +x*O(x^n)))), n)}
for(n=1,21,print1(a(n),", "))
A206764
a(n) = Sum_{k=1..n} binomial(n,k) * sigma(n,k) * (-1)^(n-k).
Original entry on oeis.org
1, -1, 10, 79, 1026, 15686, 279938, 5771359, 134218243, 3487832974, 100000000002, 3138673052878, 106993205379074, 3937454749863382, 155568096631586820, 6568441588686506943, 295147905179352825858, 14063102470280932000757, 708235345355337676357634
Offset: 1
L.g.f.: L(x) = x - x^2/2 + 10*x^3/3 + 79*x^4/4 + 1026*x^5/5 + 15686*x^6/6 +...
Exponentiation yields the g.f. of A206763:
exp(L(x)) = 1 + x + 3*x^3 + 23*x^4 + 225*x^5 + 2824*x^6 + 42670*x^7 +...
Illustration of terms.
a(2) = -2*sigma(2,1) + 1*sigma(2,2) = -2*3 + 1*5 = -1;
a(3) = 3*sigma(3,1) - 3*sigma(3,2) + 1*sigma(3,3) = 3*4 - 3*10 + 1*28 = 10;
a(4) = -4*sigma(4,1) + 6*sigma(4,2) - 4*sigma(4,3) + 1*sigma(4,4) = -4*7 + 6*21 - 4*73 + 1*273 = 79.
-
Table[Sum[Binomial[n, k] * DivisorSigma[k, n] * (-1)^(n-k), {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Oct 25 2024 *)
-
{a(n)=sum(k=1, n, binomial(n, k)*sigma(n, k)*(-1)^(n-k))}
-
{a(n)=n*polcoeff(sum(k=1, n, (1/k)*log((1-(-x)^k)/(1-(k-1)^k*x^k +x*O(x^n)))), n)}
for(n=1,21,print1(a(n),", "))
A377331
a(n) = Sum_{k=1..n} binomial(n,k) * sigma(k,n).
Original entry on oeis.org
1, 7, 58, 707, 11186, 219202, 5097205, 137036819, 4179577045, 142539843882, 5374034016858, 221930535785918, 9962431381720780, 482997720973917947, 25151350530268841003, 1400042027334939211235, 82960609980815501293708, 5213812927633674297808237, 346394632975721545946690108
Offset: 1
-
Table[Sum[Binomial[n, k] * DivisorSigma[n, k], {k, 1, n}], {n, 1, 20}]
-
{a(n)=sum(k=1, n, binomial(n, k)*sigma(k, n))}
Showing 1-7 of 7 results.
Comments