cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A203847 a(n) = tau(n)*Fibonacci(n), where tau(n) = A000005(n), the number of divisors of n.

Original entry on oeis.org

1, 2, 4, 9, 10, 32, 26, 84, 102, 220, 178, 864, 466, 1508, 2440, 4935, 3194, 15504, 8362, 40590, 43784, 70844, 57314, 370944, 225075, 485572, 785672, 1906866, 1028458, 6656320, 2692538, 13069854, 14098312, 22811548, 36909860, 134373168, 48315634, 156352676, 252983944
Offset: 1

Views

Author

Paul D. Hanna, Jan 11 2012

Keywords

Comments

Compare g.f. to the Lambert series identity: Sum_{n>=1} x^n/(1-x^n) = Sum_{n>=1} tau(n)*x^n.
Related identities:
(1) Sum_{n>=1} n^k*Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} sigma_{k}(n)*Fibonacci(n)*x^n for k>=0.
(2) Sum_{n>=1} phi(n)*Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} n*Fibonacci(n)*x^n.
(3) Sum_{n>=1} moebius(n)*Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) = x.
(4) Sum_{n>=1} lambda(n)*Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} Fibonacci(n^2)*x^(n^2).

Examples

			G.f.: A(x) = x + 2*x^2 + 4*x^3 + 9*x^4 + 10*x^5 + 32*x^6 + 26*x^7 +...
where A(x) = x/(1-x-x^2) + x^2/(1-3*x^2+x^4) + 2*x^3/(1-4*x^3-x^6) + 3*x^4/(1-7*x^4+x^8) + 5*x^5/(1-11*x^5-x^10) + 8*x^6/(1-18*x^6+x^12) +...+ Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) +...
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0, n]*Fibonacci[n], {n, 50}] (* G. C. Greubel, Jul 17 2018 *)
  • PARI
    {a(n)=sigma(n,0)*fibonacci(n)}
    
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff(sum(m=1,n,fibonacci(m)*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}
    
  • PARI
    a(n) = numdiv(n)*fibonacci(n); \\ Michel Marcus, Jul 18 2018

Formula

G.f.: Sum_{n>=1} Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} tau(n)*Fibonacci(n)*x^n, where Lucas(n) = A000204(n).

A205971 a(n) = Fibonacci(n)*A034896(n) for n >= 1, with a(0)=1, where A034896 lists the number of solutions to a^2 + b^2 + 3*c^2 + 3*d^2 = n.

Original entry on oeis.org

1, 4, 4, 8, 60, 120, 32, 416, 1092, 136, 1320, 4272, 2880, 13048, 12064, 14640, 114492, 114984, 10336, 334480, 811800, 350272, 850128, 2751072, 2411136, 9303100, 6798008, 785672, 50849760, 61707480, 19968960, 172322432, 531507396, 169179744, 410607864
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2012

Keywords

Comments

Compare g.f. to the Lambert series of A034896:
1 + 4*Sum_{n>=1} Chi(n,3)*n*x^n/(1 - (-x)^n).
Here Chi(n,3) = principal Dirichlet character of n modulo 3.

Examples

			G.f.: A(x) = 1 + 4*x + 4*x^2 + 8*x^3 + 60*x^4 + 120*x^5 + 32*x^6 + ...
where A(x) = 1 + 1*4*x + 1*4*x^2 + 2*4*x^3 + 3*20*x^4 + 5*24*x^5 + 8*4*x^6 + ... + Fibonacci(n)*A034896(n)*x^n + ...
The g.f. is also given by the identity:
A(x) = 1 + 4*( 1*1*x/(1+x-x^2) + 1*2*x^2/(1-3*x^2+x^4) + 3*4*x^4/(1-7*x^4+x^8) + 5*5*x^5/(1+11*x^5-x^10) + 13*7*x^7/(1+29*x^7-x^14) + 21*8*x^8/(1-47*x^8+x^16) + ...).
The values of the Dirichlet character Chi(n,3) repeat [1,1,0,...].
		

Crossrefs

Cf. A209451 (Pell variant).

Programs

  • Mathematica
    A034896[n_]:= SeriesCoefficient[(EllipticTheta[3, 0, q]*EllipticTheta[3, 0, q^3])^2, {q, 0, n}]; Join[{1}, Table[Fibonacci[n]*A034896[n], {n, 1, 50}]] (* G. C. Greubel, Dec 24 2017 *)
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff(1 + 4*sum(m=1,n,fibonacci(m)*kronecker(m,3)^2*m*x^m/(1-Lucas(m)*(-x)^m+(-1)^m*x^(2*m) +x*O(x^n))),n)}
    for(n=0,61,print1(a(n),", "))

Formula

G.f.: 1 + 4*Sum_{n>=1} Fibonacci(n)*Chi(n,3)*n*x^n/(1 - Lucas(n)*(-x)^n + (-1)^n*x^(2*n)).

A205884 a(n) = Pell(n)*A109064(n) for n >= 1 with a(0)=1.

Original entry on oeis.org

1, -5, 10, 50, -180, -145, -700, 5070, 10200, -34475, 11890, -344460, 415800, 2007660, -2423460, 1950250, -25895760, 90935120, 96047350, -662510900, -239916420, -2316837900, 5593341480, 24756454910, -27166986000, -6558690605, -190008957720, 764537004500
Offset: 0

Views

Author

Paul D. Hanna, Feb 01 2012

Keywords

Comments

Compare to g.f. of A109064, which is the Lambert series identity:
1 - 5*Sum_{n>=1} L(n,5)*n*x^n/(1-x^n) = eta(x)^5/eta(x^5).
Here L(n,5) is the Legendre symbol given by A080891(n).

Examples

			G.f.: A(x) = 1 - 5*x + 10*x^2 + 50*x^3 - 180*x^4 - 145*x^5 - 700*x^6 + ...
where A(x) = 1 - 1*5*x + 2*5*x^2 + 5*10*x^3 - 12*15*x^4 - 29*5*x^5 - 70*10*x^6 + 169*30*x^7 + 408*25*x^8 + ... + Pell(n)*A109064(n)*x^n + ...
The g.f. is illustrated by:
A(x) = 1 - 5*(+1)*1*1*x/(1-2*x-x^2) - 5*(-1)*2*2*x^2/(1-6*x^2+x^4) - 5*(-1)*3*5*x^3/(1-14*x^3-x^6) - 5*(+1)*4*12*x^4/(1-34*x^4+x^8) - 5*(0)*5*29*x^5/(1-82*x^5-x^10) - 5*(+1)*6*70*x^6/(1-198*x^6+x^12) + ...
The values of the Legendre symbol L(n,5) repeat: [1,-1,-1,1,0, ...].
The companion Pell numbers (A002203) begin: [2,6,14,34,82,198,478,1154,2786,6726,16238,39202,94642,...].
		

Crossrefs

Cf. A109064, A080891, A000129 (Pell), A002203 (companion Pell), A205882 (variant), A204270.

Programs

  • Mathematica
    pell[n_] := ((1+Sqrt[2])^n - (1-Sqrt[2])^n)/(2*Sqrt[2]) // Simplify; (* b = A109064 *); b[0] = 1; b[n_] := b[n] = Sum[DivisorSum[j, #*If[Divisible[#, 5], -4, -5] &]*b[n - j], {j, 1, n}]/n; a[0] = 1; a[n_] := pell[n]*b[n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 24 2017 *)
  • PARI
    {A109064(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x+A)^5/eta(x^5+A), n))}
    {a(n)=if(n==0,1,Pell(n)*A109064(n))}
    
  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)}
    {A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}
    {a(n)=polcoeff(1-5*sum(m=1, n, kronecker(m, 5)*m*Pell(m)*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))), n)}

Formula

G.f.: 1 - 5*Sum_{n>=1} Pell(n)*L(n,5)*n*x^n / (1 - A002203(n)*x^n + (-1)^n*x^(2*n)), where L(n,5) is the Legendre symbol, Pell(n) = A000129(n), and A002203 is the companion Pell numbers.
Showing 1-3 of 3 results.