cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A205959 a(n) = n^omega(n)/rad(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 6, 1, 4, 3, 10, 1, 24, 1, 14, 15, 8, 1, 54, 1, 40, 21, 22, 1, 96, 5, 26, 9, 56, 1, 900, 1, 16, 33, 34, 35, 216, 1, 38, 39, 160, 1, 1764, 1, 88, 135, 46, 1, 384, 7, 250, 51, 104, 1, 486, 55, 224, 57, 58, 1, 7200, 1, 62, 189, 32, 65, 4356, 1, 136
Offset: 1

Views

Author

Peter Luschny, Feb 03 2012

Keywords

Comments

a(n) = exp(-Sum_{d in P} moebius(d)*log(n/d)) where P = {d : d divides n and d is prime}. This is a variant of the (exponential of the) von Mangoldt function where the divisors are restricted to prime divisors. The (exponential of the) summatory function is A205957. Apart from n=1 the value is 1 if and only if n is prime; the fixed points are the products of two distinct primes (A006881).

Crossrefs

Programs

  • Haskell
    a205959 n = product $ map (div n) $ a027748_row n
    -- Reinhard Zumkeller, Dec 15 2013
    
  • Maple
    with(numtheory): A205959 := proc(n) select(isprime, divisors(n));
    simplify(exp(-add(mobius(d)*log(n/d), d=%))) end:
    # Alternative:
    a := n -> local p; mul(n/p[1], p in ifactors(n)[2]):
    seq(a(n), n = 1..68); # Peter Luschny, Jul 19 2023
  • Mathematica
    a[n_] := Exp[-Sum[ MoebiusMu[d]*Log[n/d], {d, FactorInteger[n][[All, 1]]}]]; Table[a[n], {n, 1, 68}] (* Jean-François Alcover, Jan 15 2013 *)
  • PARI
    a(n)=my(f=factor(n)[,1]);prod(i=1,#f,n/f[i]) \\ Charles R Greathouse IV, Jun 27 2013
    
  • Python
    from math import prod
    from sympy import primefactors
    def A205959(n): return prod(n//p for p in primefactors(n)) # Chai Wah Wu, Jul 12 2023
  • Sage
    def A205959(n) :
        P = filter(is_prime, divisors(n))
        return simplify(exp(-add(moebius(d)*log(n/d) for d in P)))
    [A205959(n) for n in (1..60)]
    

Formula

a(n) = Product_{p|n} n/p. - Charles R Greathouse IV, Jun 27 2013
a(n) = Product_{k=1..A001221(n)} n/A027748(n,k). - Reinhard Zumkeller, Dec 15 2013
If n is squarefree, then a(n) = n^(omega(n)-1). - Wesley Ivan Hurt, Jun 09 2020
a(p^e) = p^(e-1) for p prime, e > 0. - Bernard Schott, Jun 09 2020

Extensions

New name from Charles R Greathouse IV, Jun 30 2013