cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A206138 G.f.: A(x) = Sum_{n>=0} x^(n*(n+1)/2) / Product_{k=1..n} (1-x^k)^k.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 5, 8, 10, 17, 21, 32, 44, 62, 86, 122, 164, 230, 318, 428, 591, 803, 1088, 1467, 1995, 2665, 3596, 4800, 6430, 8552, 11416, 15093, 20062, 26487, 34988, 46035, 60626, 79490, 104278, 136337, 178189, 232331, 302724, 393493, 511165, 662775, 858380
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 2*x^4 + 4*x^5 + 5*x^6 + 8*x^7 ...
where
A(x) = 1 + x/(1-x) + x^3/((1-x)*(1-x^2)^2) + x^6/((1-x)*(1-x^2)^2*(1-x^3)^3) + x^10/((1-x)*(1-x^2)^2*(1-x^3)^3*(1-x^4)^4) +...
		

Crossrefs

Cf. A206100.

Programs

  • PARI
    {a(n)=polcoeff(sum(m=0,n,x^(m*(m+1)/2)/prod(k=1,m,(1-x^k +x*O(x^n))^k)),n)}
    for(n=0,60,print1(a(n),", "))

A318771 Expansion of Sum_{k>=0} x^(k^2) / Product_{j=1..k} (1 - x^j)^j.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 22, 25, 37, 47, 64, 81, 113, 140, 191, 243, 319, 408, 540, 677, 889, 1132, 1462, 1855, 2404, 3034, 3909, 4946, 6325, 7997, 10202, 12840, 16328, 20549, 25989, 32627, 41180, 51577, 64872, 81128, 101729, 127016, 158913, 197981, 247163, 307523, 383019
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 03 2018

Keywords

Crossrefs

Programs

  • Maple
    a:=series(add(x^(k^2)/mul((1-x^j)^j,j=1..k),k=0..100),x=0,53): seq(coeff(a,x,n),n=0..52); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 52; CoefficientList[Series[Sum[x^k^2/Product[(1 - x^j)^j, {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]

A306703 Expansion of Sum_{k>=0} x^k / Product_{j=1..k} (1 + x^j)^j.

Original entry on oeis.org

1, 1, 0, 1, -2, 1, -2, 1, -4, 7, -5, 7, -7, 16, -13, 16, -33, 38, -39, 31, -75, 79, -92, 118, -139, 201, -230, 269, -264, 494, -476, 523, -780, 886, -1095, 1261, -1533, 1857, -2593, 2197, -3367, 4256, -4240, 5816, -6484, 7985, -9800, 11051, -12561, 17530, -17516
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 05 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[x^k/Product[(1 + x^j)^j, {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]

A306664 Expansion of Sum_{k>=0} x^(k*(k+1)) / Product_{j=1..k} (1 - x^j)^j.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 19, 22, 31, 37, 54, 63, 89, 111, 146, 184, 247, 301, 398, 501, 642, 804, 1042, 1293, 1663, 2082, 2648, 3321, 4229, 5268, 6691, 8370, 10553, 13168, 16595, 20659, 25929, 32253, 40321, 50092, 62489, 77418, 96340, 119266, 147998, 182927, 226609
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 04 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 54; CoefficientList[Series[Sum[x^(k (k + 1))/Product[(1 - x^j)^j, {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]

A306731 Expansion of Sum_{k>=0} x^k * Product_{j=1..k} (1 + x^j)^j.

Original entry on oeis.org

1, 1, 2, 2, 4, 6, 10, 14, 24, 37, 56, 90, 135, 204, 316, 474, 704, 1068, 1579, 2332, 3445, 5054, 7376, 10750, 15587, 22497, 32437, 46544, 66520, 94908, 134912, 191185, 270301, 380924, 535469, 750898, 1050268, 1465284, 2039741, 2832694, 3925036, 5427381, 7488315, 10310431
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 06 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 43; CoefficientList[Series[Sum[x^k Product[(1 + x^j)^j, {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]
Showing 1-5 of 5 results.