A206159 Numbers needing at most two digits to write all positive divisors in decimal representation.
1, 2, 3, 5, 7, 11, 13, 17, 19, 22, 31, 33, 41, 55, 61, 71, 77, 101, 113, 121, 131, 151, 181, 191, 199, 211, 311, 313, 331, 661, 811, 881, 911, 919, 991, 1111, 1117, 1151, 1171, 1181, 1511, 1777, 1811, 1999, 2111, 2221, 3313, 3331, 4111, 4441, 6661, 7177, 7717, 8111, 9199, 10111, 11113
Offset: 1
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000 (terms 1..500 from M. F. Hasler)
Crossrefs
Programs
-
Mathematica
Select[Range[12000],Length[Union[Flatten[IntegerDigits/@Divisors[#]]]]<3&] (* Harvey P. Dale, May 03 2022 *)
-
PARI
select( {is_A206159(n)=#Set(concat([digits(d)|d<-divisors(n)]))<3}, [1..10^4]) \\ M. F. Hasler, May 02 2022
-
Python
from sympy import divisors def ok(n): digits_used = set() for d in divisors(n, generator=True): digits_used |= set(str(d)) if len(digits_used) > 2: return False return True print([k for k in range(1, 9000) if ok(k)]) # Michael S. Branicky, May 02 2022
Formula
A095048(a(n)) <= 2.
Extensions
Terms corrected by Harvey P. Dale, May 02 2022
Edited by N. J. A. Sloane, May 02 2022
Comments