A206226 Number of partitions of n^2 into parts not greater than n.
1, 1, 3, 12, 64, 377, 2432, 16475, 116263, 845105, 6292069, 47759392, 368379006, 2879998966, 22777018771, 181938716422, 1465972415692, 11902724768574, 97299665768397, 800212617435074, 6617003142869419, 54985826573015541, 458962108485797208, 3846526994743330075
Offset: 0
Keywords
Links
- Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..382 (first 150 terms from Alois P. Heinz)
Crossrefs
Programs
-
Maple
T:= proc(n, k) option remember; `if`(n=0 or k=1, 1, T(n, k-1) + `if`(k>n, 0, T(n-k, k))) end: seq(T(n^2, n), n=0..20); # Vaclav Kotesovec, May 25 2015 after Alois P. Heinz
-
Mathematica
Table[SeriesCoefficient[Product[1/(1-x^k),{k,1,n}],{x,0,n^2}],{n,0,20}] (* Vaclav Kotesovec, May 25 2015 *) (* A program to compute the constants d(j) *) Table[r^(2*j+1)/(r-1) /.FindRoot[-PolyLog[2,1-r] == (j+1/2)*Log[r]^2, {r, E}, WorkingPrecision->60], {j, 1, 5}] (* Vaclav Kotesovec, Jun 11 2015 *)
-
PARI
{a(n)=polcoeff(prod(k=1,n,1/(1-x^k+x*O(x^(n^2)))),n^2)} for(n=0,25,print1(a(n),", "))
Formula
a(n) = [x^(n^2)] Product_{k=1..n} 1/(1 - x^k).
a(n) ~ c * d^n / n^2, where d = 9.1533701924541224619485302924013545... = A258268, c = 0.1582087202672504149766310999238742... . - Vaclav Kotesovec, Sep 07 2014
Comments