cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206227 Number of partitions of n^2+n into parts not greater than n.

Original entry on oeis.org

1, 1, 4, 19, 108, 674, 4494, 31275, 225132, 1662894, 12541802, 96225037, 748935563, 5900502806, 46976736513, 377425326138, 3056671009814, 24930725879856, 204623068332997, 1688980598900228, 14012122025369431, 116784468316023069, 977437078888272796, 8212186058546599006
Offset: 0

Views

Author

Paul D. Hanna, Feb 05 2012

Keywords

Crossrefs

Programs

  • Maple
    T:= proc(n, k) option remember;
          `if`(n=0 or k=1, 1, T(n, k-1) + `if`(k>n, 0, T(n-k, k)))
        end:
    seq(T(n^2+n, n), n=0..20); # Vaclav Kotesovec, May 25 2015 after Alois P. Heinz
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-x^k),{k,1,n}],{x,0,n*(n+1)}],{n,0,20}] (* Vaclav Kotesovec, May 25 2015 *)
  • PARI
    {a(n)=polcoeff(prod(k=1,n,1/(1-x^k+x*O(x^(n^2+n)))),n^2+n)}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) = [x^(n^2+n)] Product_{k=1..n} 1/(1 - x^k).
a(n) ~ c * d^n / n^2, where d = 9.1533701924541224619485302924013545... = A258268, c = 0.3572966225745094270279188015952797... . - Vaclav Kotesovec, Sep 07 2014