A206227 Number of partitions of n^2+n into parts not greater than n.
1, 1, 4, 19, 108, 674, 4494, 31275, 225132, 1662894, 12541802, 96225037, 748935563, 5900502806, 46976736513, 377425326138, 3056671009814, 24930725879856, 204623068332997, 1688980598900228, 14012122025369431, 116784468316023069, 977437078888272796, 8212186058546599006
Offset: 0
Keywords
Links
- Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..382 (first 150 terms from Alois P. Heinz)
Programs
-
Maple
T:= proc(n, k) option remember; `if`(n=0 or k=1, 1, T(n, k-1) + `if`(k>n, 0, T(n-k, k))) end: seq(T(n^2+n, n), n=0..20); # Vaclav Kotesovec, May 25 2015 after Alois P. Heinz
-
Mathematica
Table[SeriesCoefficient[Product[1/(1-x^k),{k,1,n}],{x,0,n*(n+1)}],{n,0,20}] (* Vaclav Kotesovec, May 25 2015 *)
-
PARI
{a(n)=polcoeff(prod(k=1,n,1/(1-x^k+x*O(x^(n^2+n)))),n^2+n)} for(n=0,30,print1(a(n),", "))
Formula
a(n) = [x^(n^2+n)] Product_{k=1..n} 1/(1 - x^k).
a(n) ~ c * d^n / n^2, where d = 9.1533701924541224619485302924013545... = A258268, c = 0.3572966225745094270279188015952797... . - Vaclav Kotesovec, Sep 07 2014