A206240 Number of partitions of n^2-n into parts not greater than n.
1, 1, 2, 7, 34, 192, 1206, 8033, 55974, 403016, 2977866, 22464381, 172388026, 1341929845, 10573800028, 84192383755, 676491536028, 5479185281572, 44692412971566, 366844007355202, 3028143252035976, 25123376972033392, 209401287806758273, 1752674793617241002
Offset: 0
Keywords
Examples
From _Seiichi Manyama_, May 07 2018: (Start) n | Partitions of n^2 into exactly n parts --+------------------------------------------------------- 1 | 1. 2 | 3+1 = 2+2. 3 | 7+1+1 = 6+2+1 = 5+3+1 = 5+2+2 = 4+4+1 = 4+3+2 = 3+3+3. (End)
Links
- Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..382 (first 150 terms from Alois P. Heinz)
Programs
-
Maple
T:= proc(n, k) option remember; `if`(n=0 or k=1, 1, T(n, k-1) + `if`(k>n, 0, T(n-k, k))) end: seq(T(n^2-n, n), n=0..20); # Vaclav Kotesovec, May 25 2015 after Alois P. Heinz
-
Mathematica
Table[SeriesCoefficient[Product[1/(1-x^k),{k,1,n}],{x,0,n*(n-1)}],{n,0,20}] (* Vaclav Kotesovec, May 25 2015 *)
-
PARI
{a(n)=polcoeff(prod(k=1,n,1/(1-x^k+x*O(x^(n^2-n)))),n^2-n)} for(n=0,30,print1(a(n),", "))
Formula
a(n) = [x^(n^2-n)] Product_{k=1..n} 1/(1 - x^k).
a(n) ~ c * d^n / n^2, where d = 9.153370192454122461948530292401354540073... = A258268, c = 0.07005383646855329845970382163053268... . - Vaclav Kotesovec, Sep 07 2014
Comments