cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206240 Number of partitions of n^2-n into parts not greater than n.

Original entry on oeis.org

1, 1, 2, 7, 34, 192, 1206, 8033, 55974, 403016, 2977866, 22464381, 172388026, 1341929845, 10573800028, 84192383755, 676491536028, 5479185281572, 44692412971566, 366844007355202, 3028143252035976, 25123376972033392, 209401287806758273, 1752674793617241002
Offset: 0

Views

Author

Paul D. Hanna, Feb 05 2012

Keywords

Comments

Also the number of partitions of n^2 into exactly n parts. - Seiichi Manyama, May 07 2018

Examples

			From _Seiichi Manyama_, May 07 2018: (Start)
n | Partitions of n^2 into exactly n parts
--+-------------------------------------------------------
1 | 1.
2 | 3+1 = 2+2.
3 | 7+1+1 = 6+2+1 = 5+3+1 = 5+2+2 = 4+4+1 = 4+3+2 = 3+3+3. (End)
		

Crossrefs

Programs

  • Maple
    T:= proc(n, k) option remember;
          `if`(n=0 or k=1, 1, T(n, k-1) + `if`(k>n, 0, T(n-k, k)))
        end:
    seq(T(n^2-n, n), n=0..20); # Vaclav Kotesovec, May 25 2015 after Alois P. Heinz
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-x^k),{k,1,n}],{x,0,n*(n-1)}],{n,0,20}] (* Vaclav Kotesovec, May 25 2015 *)
  • PARI
    {a(n)=polcoeff(prod(k=1,n,1/(1-x^k+x*O(x^(n^2-n)))),n^2-n)}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) = [x^(n^2-n)] Product_{k=1..n} 1/(1 - x^k).
a(n) ~ c * d^n / n^2, where d = 9.153370192454122461948530292401354540073... = A258268, c = 0.07005383646855329845970382163053268... . - Vaclav Kotesovec, Sep 07 2014