cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206282 a(n) = ( a(n-1) * a(n-3) + a(n-2) ) / a(n-4), a(1) = a(2) = 1, a(3) = -1, a(4) = -4.

Original entry on oeis.org

1, 1, -1, -4, -5, 1, 9, 11, -4, -25, -31, 9, 64, 79, -25, -169, -209, 64, 441, 545, -169, -1156, -1429, 441, 3025, 3739, -1156, -7921, -9791, 3025, 20736, 25631, -7921, -54289, -67105, 20736, 142129, 175681, -54289, -372100, -459941, 142129, 974169, 1204139
Offset: 1

Views

Author

Michael Somos, Feb 05 2012

Keywords

Comments

This satisfies the same recurrence as Dana Scott's sequence A048736.

Examples

			G.f. = x + x^2 - x^3 - 4*x^4 - 5*x^5 + x^6 + 9*x^7 + 11*x^8 - 4*x^9 - 25*x^10 + ...
		

Crossrefs

Programs

  • Haskell
    a206282 n = a206282_list !! (n-1)
    a206282_list = 1 : 1 : -1 : -4 :
       zipWith div
         (zipWith (+)
           (zipWith (*) (drop 3 a206282_list)
                        (drop 1 a206282_list))
           (drop 2 a206282_list))
         a206282_list
    -- Same program as in A048736, see comment.
    -- Reinhard Zumkeller, Feb 08 2012
    
  • Magma
    I:=[1,1,-1,-4]; [n le 4 select I[n] else (Self(n-1)*Self(n-3) + Self(n-2))/Self(n-4): n in [1..30]]; // G. C. Greubel, Aug 12 2018
  • Mathematica
    CoefficientList[Series[x*(1+x)*(1-x^2)*(1+x^3)/(1-2*x^2-2*x^4-2*x^6+x^8 ), {x,0,50}], x] (* or *) RecurrenceTable[{a[n] == ( a[n-1]*a[n-3] + a[n-2] )/a[n-4], a[1] == a[2] == 1, a[3] == -1, a[4] == -4}, a, {n,1,50}] (* G. C. Greubel, Aug 12 2018 *)
  • PARI
    {a(n) = my(k = n\3); (-1)^k * if( n%3 == 0, fibonacci( k )^2, n%3 == 1, fibonacci( k+2 )^2, fibonacci( k ) * fibonacci( k+3 ) + fibonacci( k+1 ) * fibonacci( k+2 ))};
    
  • PARI
    x='x+O('x^30); Vec(x*(1+x)*(1-x^2)*(1+x^3)/(1-2*x^2-2*x^4 -2*x^6 +x^8 )) \\ G. C. Greubel, Aug 12 2018
    

Formula

G.f.: x * (1 + x - x^2 - 2*x^3 - 3*x^4 - x^5 - x^6 - x^7) / (1 + 2*x^3 - 2*x^6 - x^9).
a(n) = a(-5 - n) = a(n+2) * a(n-2) - a(n+1) * a(n-1) for all n in Z.
a(3*n) = (-1)^n * F(n)^2, a(3*n + 1) = (-1)^n * F(n + 2)^2 where F = Fibonacci A000045.
a(6*n - 4) = - A110034(2*n), a(6*n - 1) = - A110035(2*n), a(3*n + 2) = (-1)^n * A126116(2*n + 3).