cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206399 a(0) = 1; for n > 0, a(n) = 41*n^2 + 2.

Original entry on oeis.org

1, 43, 166, 371, 658, 1027, 1478, 2011, 2626, 3323, 4102, 4963, 5906, 6931, 8038, 9227, 10498, 11851, 13286, 14803, 16402, 18083, 19846, 21691, 23618, 25627, 27718, 29891, 32146, 34483, 36902, 39403, 41986, 44651, 47398, 50227, 53138, 56131, 59206, 62363, 65602
Offset: 0

Views

Author

Bruno Berselli, Feb 07 2012

Keywords

Comments

Apart from the first term, numbers of the form (r^2 + 2*s^2)*n^2 + 2 = (r*n)^2 + (s*n - 1)^2 + (s*n + 1)^2: in this case is r = 3, s = 4. After 1, all terms are in A000408.

Crossrefs

Programs

  • Magma
    [n eq 0 select 1 else 41*n^2+2: n in [0..39]];
    
  • Magma
    I:=[1,43,166,371]; [n le 4 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..41]]; // Vincenzo Librandi, Aug 18 2013
    
  • Mathematica
    Join[{1}, 41 Range[39]^2 + 2]
    CoefficientList[Series[(1 + x) (1 + 39 x + x^2) / (1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 18 2013 *)
  • PARI
    a(n)=if(n,41*n^2+2,1) \\ Charles R Greathouse IV, Sep 24 2015

Formula

O.g.f.: (1 + x)*(1 + 39*x + x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 4. - Wesley Ivan Hurt, Dec 18 2020
E.g.f.: exp(x)*(41*x^2 + 41*x + 2) - 1. - Elmo R. Oliveira, Nov 29 2024