A206464 Number of length-n Catalan-RGS (restricted growth strings) such that the RGS is a valid mixed-radix number in falling factorial basis.
1, 1, 2, 4, 10, 26, 74, 218, 672, 2126, 6908, 22876, 77100, 263514, 911992, 3189762, 11261448, 40083806, 143713968, 518594034, 1882217168, 6867064856, 25172021144, 92666294090, 342467464612, 1270183943200, 4726473541216, 17640820790092, 66025467919972
Offset: 0
Keywords
Examples
The a(5)=26 strings for n=5 are (dots for zeros): 1: [ . . . . . ] 2: [ . . . . 1 ] 3: [ . . . 1 . ] 4: [ . . . 1 1 ] 5: [ . . 1 . . ] 6: [ . . 1 . 1 ] 7: [ . . 1 1 . ] 8: [ . . 1 1 1 ] 9: [ . . 1 2 . ] 10: [ . . 1 2 1 ] 11: [ . 1 . . . ] 12: [ . 1 . . 1 ] 13: [ . 1 . 1 . ] 14: [ . 1 . 1 1 ] 15: [ . 1 1 . . ] 16: [ . 1 1 . 1 ] 17: [ . 1 1 1 . ] 18: [ . 1 1 1 1 ] 19: [ . 1 1 2 . ] 20: [ . 1 1 2 1 ] 21: [ . 1 2 . . ] 22: [ . 1 2 . 1 ] 23: [ . 1 2 1 . ] 24: [ . 1 2 1 1 ] 25: [ . 1 2 2 . ] 26: [ . 1 2 2 1 ]
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(i, l) option remember; `if`(i<=0, 1, add(b(i-1, j), j=0..min(l+1, i))) end: a:= n-> b(n-1, 0): seq(a(n), n=0..40); # Alois P. Heinz, Feb 08 2012
-
Mathematica
b[i_, l_] := b[i, l] = If[i <= 0, 1, Sum[b[i-1, j], {j, 0, Min[l+1, i]}]]; a[n_] := b[n-1, 0]; a /@ Range[0, 40] (* Jean-François Alcover, Nov 07 2020, after Alois P. Heinz *)
Formula
Conjecture: a(n) = Sum_{k = 0..floor(n/4)} (-1)^k * C(floor(n/2) + 1 - k, k + 1) * a(n - 1 - k), a(0) = 1. - Gionata Neri, Jun 17 2018
Comments