cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206464 Number of length-n Catalan-RGS (restricted growth strings) such that the RGS is a valid mixed-radix number in falling factorial basis.

Original entry on oeis.org

1, 1, 2, 4, 10, 26, 74, 218, 672, 2126, 6908, 22876, 77100, 263514, 911992, 3189762, 11261448, 40083806, 143713968, 518594034, 1882217168, 6867064856, 25172021144, 92666294090, 342467464612, 1270183943200, 4726473541216, 17640820790092, 66025467919972
Offset: 0

Views

Author

Joerg Arndt, Feb 08 2012

Keywords

Comments

Catalan-RGS are strings with first digit d(0)=zero, and d(k+1) <= d(k)+1, falling factorial mixed-radix numbers have last digit <= 1, second last <= 2, etc.
The digits of the RGS are <= floor(n/2).
The first few terms are the same as for A089429.
Column k=0 of A264869. - Peter Bala, Nov 27 2015
a(n) = A291680(n+1,n+1). - Alois P. Heinz, Aug 29 2017

Examples

			The a(5)=26 strings for n=5 are (dots for zeros):
   1:  [ . . . . . ]
   2:  [ . . . . 1 ]
   3:  [ . . . 1 . ]
   4:  [ . . . 1 1 ]
   5:  [ . . 1 . . ]
   6:  [ . . 1 . 1 ]
   7:  [ . . 1 1 . ]
   8:  [ . . 1 1 1 ]
   9:  [ . . 1 2 . ]
  10:  [ . . 1 2 1 ]
  11:  [ . 1 . . . ]
  12:  [ . 1 . . 1 ]
  13:  [ . 1 . 1 . ]
  14:  [ . 1 . 1 1 ]
  15:  [ . 1 1 . . ]
  16:  [ . 1 1 . 1 ]
  17:  [ . 1 1 1 . ]
  18:  [ . 1 1 1 1 ]
  19:  [ . 1 1 2 . ]
  20:  [ . 1 1 2 1 ]
  21:  [ . 1 2 . . ]
  22:  [ . 1 2 . 1 ]
  23:  [ . 1 2 1 . ]
  24:  [ . 1 2 1 1 ]
  25:  [ . 1 2 2 . ]
  26:  [ . 1 2 2 1 ]
		

Crossrefs

Programs

  • Maple
    b:= proc(i, l) option remember;
          `if`(i<=0, 1, add(b(i-1, j), j=0..min(l+1, i)))
        end:
    a:= n-> b(n-1, 0):
    seq(a(n), n=0..40);  # Alois P. Heinz, Feb 08 2012
  • Mathematica
    b[i_, l_] := b[i, l] = If[i <= 0, 1, Sum[b[i-1, j], {j, 0, Min[l+1, i]}]];
    a[n_] := b[n-1, 0];
    a /@ Range[0, 40] (* Jean-François Alcover, Nov 07 2020, after Alois P. Heinz *)

Formula

Conjecture: a(n) = Sum_{k = 0..floor(n/4)} (-1)^k * C(floor(n/2) + 1 - k, k + 1) * a(n - 1 - k), a(0) = 1. - Gionata Neri, Jun 17 2018