cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206481 a(n) + a(n+2) = n^3.

Original entry on oeis.org

0, 1, 1, 7, 26, 57, 99, 159, 244, 353, 485, 647, 846, 1081, 1351, 1663, 2024, 2433, 2889, 3399, 3970, 4601, 5291, 6047, 6876, 7777, 8749, 9799, 10934, 12153, 13455, 14847, 16336, 17921, 19601, 21383, 23274, 25273, 27379, 29599, 31940, 34401, 36981, 39687
Offset: 1

Views

Author

Keywords

Comments

If the offset were 0, the formula would be: a(0)=0, a(1)=1, for n>=2: a(n) = (n-1)^3 - a(n-2).

Crossrefs

Cf. A144129 (bisection).

Programs

  • Mathematica
    LinearRecurrence[{4, -7, 8, -7, 4, -1}, {0, 1, 1, 7, 26, 57}, 60]
    RecurrenceTable[{a[1]==0,a[2]==1,a[n]==(n-2)^3-a[n-2]},a,{n,50}] (* Harvey P. Dale, Sep 14 2012 *)
  • Python
    prpr = 0
    prev = 1
    for n in range(1,77):
        print(prpr, end=',')
        curr = n*n*n - prpr    # a(n+1)
        prpr = prev
        prev = curr

Formula

a(n) = (1/2)*((n-3)*n^2-4*cos((Pi*n)/2)+2). - Harvey P. Dale, Sep 14 2012
G.f.: x^2*(1 - 3*x + 10*x^2 - 3*x^3 + x^4)/((1-x)^4*(1+x^2)). - Paul D. Hanna, Sep 14 2012