cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206526 a(n) = 137*(n-1) - a(n-1) with n>1, a(1)=31.

Original entry on oeis.org

31, 106, 168, 243, 305, 380, 442, 517, 579, 654, 716, 791, 853, 928, 990, 1065, 1127, 1202, 1264, 1339, 1401, 1476, 1538, 1613, 1675, 1750, 1812, 1887, 1949, 2024, 2086, 2161, 2223, 2298, 2360, 2435, 2497, 2572, 2634, 2709, 2771, 2846, 2908, 2983
Offset: 1

Views

Author

Vincenzo Librandi, Mar 09 2012

Keywords

Comments

Positive numbers k such that k^2 == 2 (mod 137), where the prime 137 == 1 (mod 8).
Equivalently, numbers k such that k == 31 or 106 (mod 137).
The subsequence of primes begins: 31, 853, 1613, 1949, 2161. - Jonathan Vos Post, Mar 09 2012

Crossrefs

Sequences of the type n^2 == 2 (mod p), where p is a prime of the form 8k+1: A155449, A158803, A159007, A159008, A176010, A206525.
Sequences of the type n^2 == 2 (mod p), where p is a prime of the form 8k-1: A047341, A155450, A164131, A164135, A167533, A167534, A177044, A177046, A204769.

Programs

  • Magma
    [(-137+13*(-1)^n+274*n)/4: n in [1..60]];
    
  • Magma
    [n: n in [1..3000] | n^2 mod 137 eq 2]; // Vincenzo Librandi, Mar 31 2016
  • Mathematica
    LinearRecurrence[{1, 1, -1}, {31, 106, 168}, 40] (* or *) CoefficientList[Series[x*(31+75*x+31*x^2)/((1+x)*(x-1)^2), {x, 0, 50}], x] (* or *) a[1] = 31; a[n_] := a[n] = 137*(n-1) - a[n-1]; Table[a[n], {n, 1, 40}]

Formula

a(n) = a(n-2) + 137.
G.f.: x*(31+75*x+31*x^2)/((1+x)*(x-1)^2).
a(n) = (-137+13*(-1)^n+274*n)/4.
a(n) = a(n-1)+a(n-2)-a(n-3).
Sum_{n>=1} (-1)^(n+1)/a(n) = cot(31*Pi/137)*Pi/137. - Amiram Eldar, Feb 28 2023